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Abstract: Advances in information and internet technologies have significantly transformed the busi-

ness environment, including the financial sector. The COVID-19 pandemic has further accelerated this 

digital adoption, expanding the e-commerce industry and highlighting the necessity for secure online 

transactions. Credit Card Fraud Detection (CCFD) stands critical as the prevalence of fraudulent ac-

tivities continues to rise with the increasing volume of online transactions. Traditional methods for 

detecting fraud, such as rule-based systems and basic machine learning models, tend to fail to keep 

pace with fraudsters' evolving tactics. This study proposes a novel ensemble deep learning-based ap-

proach that combines Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), and 

Multilayer Perceptron (MLP) with the Synthetic Minority Oversampling Technique and Edited Nearest 

Neighbors (SMOTE-ENN) to address class imbalance and improve detection accuracy. The method-

ology integrates CNN for feature extraction, GRU for sequential transaction analysis, and Multilayer 

Perceptron (MLP) as a meta-learner in a stacking framework. By leveraging SMOTE-ENN, the pro-

posed approach enhances data balance and prevents overfitting. With synthetic data, the robustness 

and accuracy of the model have been improved, particularly in scenarios where fraudulent examples 

are scarce. The experiments conducted on real-world credit card transaction datasets have established 

that our approach outperforms existing methods, achieving higher metrics performance. 

Keywords: Credit card frauds detection; Credit card transaction datasets; Deep learning-based ensem-

ble models; Imbalanced datasets; Synthetic minority over-sampling technique with edited nearest 

neighbors. 

 

1. Introduction 

Advances in information and internet technologies have significantly transformed the 
business environment, including the financial sector. The COVID-19 pandemic has further 
accelerated this digital shift, expanding the e-commerce industry and highlighting the neces-
sity for secure online transactions[1]. This rapid digitalization has created significant security 
challenges, particularly in credit card fraud. Credit cards are currently the primary method for 
online shopping and card-not-present transactions, making them particularly susceptible to 
fraud[2]. Globally, transaction fraud has risen significantly, causing substantial financial losses 
and undermining consumer confidence in digital payment systems[3]. Credit card fraud de-
tection (CCFD) is crucial to financial security as fraud increases with the increasing volume 
of online transactions. The main difficulty comes from the always-changing nature of the 
operations performed by criminals, which classical methods, such as rule-based systems and 
simple machine learning, have not been able to handle successfully. While deep learning (DL) 
is extensively leveraged in fields like computer vision and natural language processing, its 
application in credit card fraud detection remains limited[4]. Traditional models have consid-
erable handicaps in modeling complex and dynamic patterns of fraud. 
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In comparison, DL models, like Convolutional Neural Networks (CNNs), perform ex-
cellently for automatic feature extraction, and Gated Recurrent Units (GRUs) are suitable for 
processing sequential data such as transaction history[5]. In this domain, a significant issue is 
a class imbalance, where the number of fraudulent transactions is many folds lower than that 
of legitimate transactions, distorting the model's performance indicators [6]. As a result, the 
serious imbalance causes a huge degradation in identifying the minority class (fraudulent 
transactions) due to the overwhelming predominance of the majority class (legitimate trans-
actions) during the model training process. 

In this research, the SMOTE-ENN approach is used. SMOTE-ENN is a compounding 
resampling method that merges the Synthetic Minority Over-sampling Technique with Edited 
Nearest Neighbors to deal with the issue of data trapped within the class imbalance. This 
approach has demonstrated greater effectiveness in handling imbalanced data than traditional 
oversampling and under-sampling techniques[7], [8]. We aim to enhance feature extraction 
and classification processes by integrating CNN and GRU models. Ensemble learning per-
forms training of multiple base classifiers and combines their outputs to achieve higher per-
formance than single classifiers[9]. Consequently, ensemble learning-based classifiers mostly 
outperform equivalent single classifiers[10], [11]. However, existing literature shows few ap-
plications of deep learning-based ensemble models for CCFD. To narrow this research gap 
while addressing the challenges facing CCFD, this research uses CNN and GRU networks as 
base learners within a stacking ensemble model. While most ensemble approaches for CCFD 
employ voting-based methods, this study uses the MLP neural network as the meta-learner 
in the stacking ensemble, following the approach suggested by Mienye[7]. The proposed ap-
proach leverages the advantages of sequential modeling and ensemble learning and enhances 
CCFD. 

This study proposes a novel approach to CCFD by integrating CNN and GRU models, 
addressing the class imbalance problem, and enhancing feature extraction and classification 
processes. The key contributions of this research include: 

• Improved Model: Develop a CCFD model using CNN for feature extraction, GRU for 
learning transaction sequences, and MLP as a meta-learner in an ensemble model. 

• Class Imbalance: Address class imbalance with SMOTE-ENN resampling and advanced 
feature selection techniques. 

• Enhanced Detection Rate: Combine ensemble and deep learning for robust fraud detec-
tion. 
The remaining part of the paper is organized into five sections. Section 2 explores related 

works and identifies the research gaps this paper addresses. Section 3 describes the work's 
methodology, including the results' validation process. Section 4 presents the experiment and 
its setup, and then section 5 discusses the results. Finally, we conclude the paper in section 6 
by summarizing the findings and contribution and suggesting areas of future research. 

2. Related Work 

The CCFD field has witnessed significant advancements in adopting machine learning 
(ML) and DL techniques. Early approaches primarily focused on classical ML algorithms. 
However, recent studies have shown that deep learning architectures, especially CNNs, Re-
current Neural Networks (RNNs), and ensemble methods, perform better in detecting fraud-
ulent transactions. 

Several traditional ML techniques have been applied to credit card fraud detection with 
varying degrees of success. For instance, Vardhani et al. proposed a Condensed nearest-neigh-
bor algorithm to reduce computational complexity during fraud detection tasks [12]. This 
non-parametric method condenses the dataset to improve query times and memory usage, 
particularly useful in distributed data mining applications. The study demonstrated the algo-
rithm's potential to reduce computational overhead without compromising detection accu-
racy. Additionally, Vardhani et al. [12] compared various ML algorithms for credit card fraud 
detection, including Condensed Nearest Neighbor. While Condensed Nearest Neighbor out-
performed other algorithms in terms of accuracy, the authors pointed out challenges related 
to the speed of feature extraction and model testing, emphasizing the need for continuous 
improvement in detection models. 

Using CNNs in fraud detection has proven effective in capturing complex transaction 
patterns. Nalayini et al. introduced a three-layered CNN model with a smart matrix 
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algorithm[13]. This model utilized random under-sampling and normalization techniques to 
improve dataset preprocessing and training efficiency. The results showed that CNN outper-
formed ML algorithms like Naive Bayes and K-Nearest Neighbours (KNN), especially in 
handling large datasets and real-time applications. Fu et al. [14] investigated CNN-based mod-
els in their research, introducing a framework that transformed transaction data into a feature 
matrix to identify hidden patterns of fraudulent activity. Their model outperformed conven-
tional fraud detection techniques when utilized on actual datasets. By expanding on these 
results, Zhang et al. [15] created a CNN model to process low-dimensional, non-derivative 
online transaction data. By restructuring raw transaction attributes into convolutional pat-
terns, the model attained excellent precision and recall, further confirming CNNs as valuable 
instruments for detecting fraud. 

Detecting fraud is difficult due to class imbalance between the extremely few fraudulent 
transactions and the bulk of legitimate transactions. This has stimulated interest in sampling 
methods, particularly the Synthetic Minority Oversampling Technique (SMOTE) and its var-
iations. Sisodia et al. proved that the combination of SMOTE and Edited Nearest Neighbors 
(SMOTE-ENN) performs better than other resampling techniques in detecting fraud[15]. 
Esenogho et al.[10] combined SMOTE-ENN with Long Short-Term Memory (LSTM) net-
works and achieved 99.6% sensitivity and 99.8% specificity by oversampling with error-cor-
recting sampling to prevent overfitting. Akazue et al. [16] proposed an ensemble method for 
feature selection combining recursive feature elimination, information gain, and Chi-squared 
methods using a random forest algorithm, thus achieving 99.6%-F1 scores and 100% preci-
sion. Finally, Mienye and Sun presented a stacked ensemble model using LSTM and GRU 
with 100% sensitivity and 99.7% specificity, advocating for treating class imbalance in fraud 
detection[7]. 

In a time when deep learning models are becoming more capable of articulating temporal 
dynamics and intra-transaction interactions, Li et al. [17] proposed a sandwich-structured 
model based on GRU, combining ensemble models, deep sequential learnings, and attention 
mechanisms in it, thereby identifying complex transaction patterns. A survey by Arora et al. 
[4] on machine learning algorithms used for fraud detection mentions that hybrid models and 
deep learning methods performed the best on larger datasets. Setiadi et al. [18] developed a 
bidirectional GRU and feature selection for phishing website detection. Çetin and Öztürk 
[19] explored and developed an ensemble learning model for IoT cybersecurity across multi-
class and binary classification tasks. Dhahir et al. [20] combined the CBLOF with XGBoost 
to increase DDoS detection accuracy up to 99.99%. 

Finally, Transformer's attention has been turned towards its newfound ability to engage 
sequential data efficiently. Iqbal and Amin [21] applied a Transformer-based model to the 
European Credit Card dataset, which yielded an incredible 100% accuracy, sensitivity, and 
specificity, with an AUC of 100%. Though Transformer models stand out for their consum-
mate performance, they call for computational requirements, demonstrating the tradeoff be-
tween accuracy and the underlying efficiency issues. Pathirana et al.[22] explored a related 
approach in mental health applications, demonstrating the potential of reinforcement learning 
(RL) combined with multimodal emotion recognition for personalized interventions. Alt-
hough the study was centered on mental health, its multimodal RL framework offers prom-
ising avenues for fraud detection research. 

Credit card fraud detection is accelerating based on the integration of machine learning 
and deep learning techniques. CNNs, RNNs, and advanced techniques like SMOTE-ENN 
have improved model performance. However, a gap exists in applying deep learning-based 
ensemble models, particularly combining CNNs and GRUs, for real-time fraud detection. 
Due attention has not been given to hybrid models integrating these techniques and ensemble 
learning in the context of credit card fraud detection. It is worth mentioning that the integra-
tion of MLP networks as meta-learners has not yet been formulated. In future works, such 
deep learning models will be a priority for further developments in class imbalance handling 
and computational efficiency optimization to outpace increasingly sophisticated fraudulent 
activities [23]. 

3. Proposed Method 

The suggested CCFD approach employs a strong stacking-based ensemble model that 
combines CNN, MLP, and GRU neural networks. The stacking architecture constitutes two 
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levels, Level 0 and 1. At Level 0, the base classifiers generate predictions following training 
and assessment of data points out of the sample. The meta-classifier at level 1 is trained using 
a new dataset comprising these predictions and the real labels[24]. 

The MLP is the meta-learner at level 1 in this framework, whereas GRU and CNN are 
the base learners at level 0. The integration of GRU and CNN is motivated by their respective 
advantages: CNN efficiently captures spatial information, whereas GRU is excellent at han-
dling sequential data (like transaction history). Their unique design adds variety to the group, 
essential for raising performance levels. The ensemble is more robust because multiple base 
models are more likely to make different kinds of mistakes. Figure 1 presents the suggested 
methodology. 

 

Figure 1. Proposed Deep Learning-based Ensemble Model 

3.1. Dataset 

This research applies the CCFD dataset [25], which comprises credit card transactions 
from European cardholders from two days in September 2013. It possesses a high degree of 
imbalance, where only 492 fraudulent transactions are part of 284,807. Owing to its largeness, 
real-world availability, and frequent use for assessing fraud detection algorithms, it is an apt 
candidate for benchmarking purposes. The diversity of the dataset also contributes to realistic 
fraud detection challenges. 

The distributions before and after applying SMOTE-ENN are shown in Figure 2. Ini-
tially, there were 284,315 non-fraudulent transactions, and only 492 were fraudulent. After 
applying SMOTE-ENN, the distributions become more balanced, with 265,395 non-fraudu-
lent and 275,740 fraudulent transactions, thus reducing bias and favoring better fraud detec-
tion with more balanced datasets. 

The dataset is publicly available at https://www.kaggle.com/mlg-ulb/creditcardfraud 
from which one can reproduce and compare the research with other works. Preprocessing 
steps were performed, where attributes except for 'Time' and 'Amount' were transformed into 
numerical features (V1 to V28) for privacy. 'Amount' denotes the transaction value, 'Time' 
denotes the duration since the first transaction, and 'Class' determines whether a given trans-
action is fraudulent (1) or legitimate (0).  

The extremely low number of only 0.172% of fraudulent samples leads to the dramatic 
class imbalance that affects model generalization. Oversampling or undersampling methods 
are often used to deal with this [26], [27]. Since oversampling could lead to overfitting and 
undersampling could lead to some useful data being lost, we will use SMOTE-ENN, a com-
bination of both methods. SMOTE generates synthetic instances in the minority class[28], 
while ENN discards overlapping samples based on some neighborhood cleaning rule[29]. 
The SMOTE-ENN algorithm details can be found in[7]. 
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Figure 2. Dataset Distribution Before and After Applying SMOTE-ENN 

3.2. Deep Learning Ensemble 

A strong ensemble model based on stacking, comprising GRU, CNN, and MLP neural 
networks, is used in the suggested CCFD technique. The stacking architecture consists of two 
levels: Level 0 and Level 1. Base models such as GRU and CNN produce initial predictions 
at the first level. In contrast, Level 1 employs a meta-classifier known as MLP, which enhances 
these predictions by using a novel dataset created from the outputs of the base models along-
side their corresponding true labels[24]. The GRU model excels at recognizing sequential 
patterns, while the CNN is adept at extracting spatial features. This combination reduces 
complementary errors within the ensemble, thereby enhancing robustness. 

As depicted in Figure 1, this methodology follows three primary steps. Initially, both 
GRU and CNN are trained through cross-validation to generate out-of-sample forecasts. For 

each sample (𝑥𝑖, 𝑦𝑖 ) represented as Equation (1). 

𝑥�̂� = {ℎ1(𝑥𝑖), ℎ2(𝑥𝑖)} (1) 

Where ℎ1 and ℎ2 are the base models and represent their combined predictions.  
Second, the MLP meta-classifier is trained on these predictions and their true labels, 

ensuring no overlap with the data used at Level 0 to prevent overfitting. For any test input 𝑥, 
the final ensemble prediction is calculated using Equation (2). 

ℎ̂(ℎ1(𝑥), ℎ2(𝑥)) (2) 

Where ℎ̂ represents the meta-classifier. 
Finally, the meta-classifier combines predictions from GRU and CNN to classify trans-

actions as fraudulent (1) or legitimate (0). 
Ultimately, this framework allows transactions to be classified as fraudulent (1) or legit-

imate (0). The stacking method boosts detection accuracy by harnessing GRU's ability to 
handle sequential information alongside CNN's expertise in analyzing spatial context with 
MLP to fine-tune all ultimate predictions. 

To ensure this model effectively manages imbalanced datasets—adverse conditions of-
ten faced—it utilizes a preprocessing pipeline that incorporates SMOTE-ENN techniques 
for class balancing, data cleansing, and feature normalization processes[7], [30]. 

3.2.1. Preprocessing Techniques 

The data processing included several vital procedures to set the dataset to train the 
model. First, missing values were checked, and no imputation was performed since none ex-
isted. The dataset was split into features (X) and the target variable, called "Class" (y), where 
"Class" indicates whether a transaction is legitimate or fraudulent. Due to considerable class 
imbalance, SMOTE-ENN was implemented, producing synthetic samples for the minority 
class: 265,395 non-fraudulent and 275,740 fraudulent transactions. Features were transformed 
into number representations to protect confidentiality, leaving the "Time" and "Amount" 
features untransformed. Features were normalized using StandardScaler, with mean = 0 and 
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standard deviation = 1. Feature selection was done finally to remove redundant or irrelevant 
features to avoid overfitting and improve the model's generalization. 

3.2.2. Class Balancing with SMOTE-ENN 

To address the class imbalance, a preprocessing pipeline utilizes a hybrid method called 
SMOTE-ENN, a merger of SMOTE and ENN. SMOTE generates synthetic samples for the 

minority class by interpolation between existing samples. 𝑥𝑖 and 𝑥𝑗 in the process described 
in Equation (3) 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑗 − 𝑥𝑖) (3) 

Where 𝑥𝑖 and 𝑥𝑗 are two randomly selected samples from the minority class; 𝜆 is a random 

value drawn from a uniform distribution, 𝜆 𝜖 [0,1]. 
SMOTE increases the representation of the minority class by creating synthetic samples 

in feature space, thereby reducing overfitting with respect to random oversampling. ENN 
complements SMOTE by refining the dataset and addressing noisy or misclassified majority 

class samples. For each sample 𝑥𝑖 in the majority class, ENN evaluates its classification using 

𝑘 k-nearest neighbors (commonly 𝑘=3). A majority class sample is removed if it is misclassi-
fied, as determined by the following condition, see Equation (4). 

𝐶𝑙𝑎𝑠𝑠(𝑥𝑖) ≠ 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∑ 𝐼(𝐶𝑙𝑎𝑠𝑠(𝑥𝑗) = 𝑐)

𝑥𝑗𝜖𝑁𝑘(𝑥𝑖)

 (4) 

Where 𝑁𝑘(𝑥𝑖) represents the set of 𝑘 k-nearest neighbors of 𝑥𝑖; 𝐼(⋅) is the indicator func-

tion; 𝐶𝑙𝑎𝑠𝑠(𝑥𝑗) is the class label of the neighbor 𝑥𝑗; and 𝑐 is the candidate class label. 

While traditional SMOTE focuses exclusively on oversampling the minority class, 
SMOTE-ENN introduces a two-step process incorporating data cleaning. This hybrid ap-
proach balances the dataset and improves its quality by reducing noise and eliminating over-
laps between classes. Other variants of SMOTE, such as SMOTE-Tomek, also address noise 
but use different methodologies. For instance, Tomek links remove borderline samples be-
tween classes, whereas ENN specifically targets misclassified majority-class samples. This dis-
tinction makes SMOTE-ENN particularly effective in scenarios with significant noise and 
overlap. 

3.2.3. Models Design 

In the context of credit card fraud detection, the system is designed with a two-level 
architecture. At Level 0, two base models are employed: a CNN to extract spatial patterns 
from transaction data and a GRU to capture temporal dependencies within sequential trans-
actions.  

Table 1. CNN base model design. 

No Parameter Value Description 

1 Input Shape (X_train.shape[1], 1) The input is reshaped into sequences of fea-
tures with one channel. 

2 Conv1D Filters 64 The number of convolutional layer filters. 

3 Kernel Size 2 Size of the convolution kernel. 

4 Activation Function ReLU Introduces non-linearity into the model. 

5 Pooling Layer MaxPooling1D (pool 
size=2) 

Reduces the dimensionality of feature maps. 

6 Dense Layer Neurons 128 Number of neurons in the fully connected 
layer. 

7 Output Activation Sigmoid Outputs probabilities for binary classification. 

8 Optimizer Adam Optimizer for weight updates during training. 

9 Loss Function Binary Cross-Entropy Evaluates the difference between predictions 
and true labels. 

10 Epochs 10 Number of complete training iterations. 

11 Batch Size 64 Number of samples per batch 
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These models independently learn distinct features from the data. At Level 1, a Multi-
layer Perceptron (MLP) acts as the meta-learner. It combines the predictions generated by 
CNN and GRU, leveraging their complementary strengths to optimize the final classification. 
The CNN is designed to extract spatial features from transaction data, capturing localized 
patterns indicative of fraud. Its architecture is summarized in Table 1. The output layer of 
CNN generates binary classification probabilities using a sigmoid activation function, while 
the convolutional and dense layers introduce non-linearity using the ReLU activation func-
tion. The model effectively captures spatial dependencies within the transaction features. 

The GRU is designed to process sequential transaction data, capturing temporal patterns 
and dependencies. Its architecture is outlined in Table 2. 

Table 2. GRU base model design. 

No Parameter Value Description 

1 Input Shape (X_train.shape[1], 1) The input is reshaped for sequential pro-
cessing. 

2 GRU Units 32 Number of recurrent units in the GRU layer. 

3 Dense Layer Neurons 64 Number of neurons in the dense layer. 

4 Activation Function ReLU Adds non-linearity to the dense layer. 

5 Output Activation Sigmoid Outputs probabilities for binary classification. 

6 Optimizer Adam Optimizer for efficient gradient updates. 

7 Loss Function Binary Cross-Entropy Evaluates the discrepancy between predictions 
and labels. 

8 Epochs 10 Number of training cycles. 

9 Batch Size 64 Number of samples processed per batch. 

 
The GRU leverages its gating mechanism to efficiently learn temporal dependencies over 

transaction sequences, mitigating challenges associated with long-term dependencies in recur-
rent models. 

The MLP acts as the meta-learner, combining CNN and GRU base model predictions. 
Its architecture is summarized in Table 3. 

Table 3. MLP Meta Learner Design. 

No Parameter Value Description 

1 Hidden Layer Sizes (64, 32) There are two hidden layers, each with 64 and 
32 neurons. 

2 Activation Function ReLU Used in the hidden layers to capture complex 
relationships. 

3 Output Activation Sigmoid Produces final probabilities for binary classifi-
cation. 

4 Optimizer Adam Optimizer for minimizing the loss function. 

5 Loss Function Binary Cross-Entropy Measures the error in classification tasks. 

6 Epochs 100 Maximum number of training iterations. 

 
By combining out-of-fold predictions from the CNN and GRU, the MLP learns to op-

timize the final classification, leveraging the unique strengths of the base models. 

3.3. Validation of the Proposed Model 

The model's capability to identify credit card fraud was determined by using multiple 
metrics: sensitivity, specificity, AUC-ROC, accuracy, precision and F1-Score. Sensitivity 
checks the proportion of frauds correctly classified as fraudulent transactions, while specific-
ity checks on real transactions that are identified as real transactions. The precision ratio quan-
tifies how many fraudulent transactions were accurately identified from the total number of 
transactions that were flagged as fraudulent. A high AUC-ROC denotes a model that effec-
tively differentiates between genuine and fraudulent transactions while accuracy checks for 
the model's overall correctness. The F1-Score describes the harmonic mean of precision and 
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recall, providing a balanced view of the model's performance, especially in imbalanced data 
sets. 

4. Experiment and Results 

4.1. Experimental Environment 

The study proposes a deep learning ensemble technique that is coupled with data 
resampling to develop a trial for detecting fraud in the use of cards. The experimental findings 
are reported in two sections, one for the performance of the classifiers before and one for 
after data resampling. The suggested stacking ensemble employs a CNN and GRU neural 
network as the base learners, while an MLP neural network acts as the meta-learner. This 
technique is evaluated next to six other classifiers: Logistic Regression (LR), Random Forest 
(RF), MLP, CNN, GRU, and CNN with GRU combinations, respectively. The modeling for 
all classes has been performed in the Python environment with the scikit-learn library, while 
tests are based on a Windows 11-based computer with a Ryzen 5600H processor and 20 GB 
of RAM. 

4.2. Results 

The performance of various machine learning and deep learning models for credit card 
fraud detection was evaluated using a comprehensive set of metrics, including accuracy, spec-
ificity, sensitivity, precision, F1-Score, and AUC-ROC. The models assessed include LR, RF, 
ML, CNN, GRU, a hybrid CNN + GRU model, and an ensemble model combining CNN, 
GRU, and MLP. The evaluation was conducted before and after applying the SMOTE-ENN 
technique to address the class imbalance in the dataset. The results are presented in Table 4 
and Table 5, and the performance of the ensemble model is further illustrated in Figure 3. 

4.2.1. Model Performance Before SMOTE-ENN 

Before applying SMOTE-ENN, the dataset exhibited significant class imbalance, with 
fraudulent transactions representing a small fraction of the total data. This imbalance ad-
versely affected the models' performance, particularly regarding sensitivity. The results are 
summarized in Table 4.  

Table 4. Performance of the classifiers before SMOTE-ENN. 

Models Accuracy Specificity Sensitivity Precision F1-Score AUC-ROC 

LR 0.923 0.981 0.684 0.845 0.789 0.833 

RF 0.938 0.975 0.742 0.873 0.824 0.859 

MLP 0.945 0.972 0.798 0.889 0.864 0.885 

CNN 0.942 0.969 0.782 0.876 0.851 0.876 

GRU 0.94 0.967 0.775 0.870 0.846 0.871 

CNN+GRU 0.944 0.97 0.789 0.880 0.858 0.880 

Proposed 0.947 0.973 0.805 0.893 0.869 0.889 

 
The ensemble model (CNN+GRU+MLP) achieved the best performance among all 

models, with an accuracy of 94.7%, sensitivity of 80.5%, and an AUC-ROC of 0.889. This 
demonstrates the effectiveness of combining multiple models to leverage their complemen-
tary strengths. However, the sensitivity values for all models were relatively low, indicating 
that the models struggled to detect fraudulent transactions effectively due to the imbalanced 
nature of the dataset. For instance, Logistic Regression achieved a sensitivity of only 68.4%, 
meaning that nearly 32% of fraudulent transactions were missed. This highlights the critical 
need to address class imbalance in fraud detection tasks. 

4.2.2. Model Performance After SMOTE-ENN 

A new hybrid classification technique is defined to address the class imbalance: SMOTE-
ENN. SMOTE generates synthetic samples for minority classes, whereas ENN removes the 
samples with lots of noisy data relative to the classification. The performance results after 
applying SMOTE-ENN are summarized in Table 5. 
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Table 5. Performance of the classifiers after SMOTE-ENN. 

Models Accuracy Specificity Sensitivity Precision F1-Score AUC-ROC 

LR 0.981 0.992 0.972 0.982 0.982 0.982 

RF 0.961 0.987 0.936 0.947 0.961 0.961 

MLP 1.000 1.000 1.000 1.000 0.999 1.000 

CNN 0.999 0.999 1.000 0.999 0.999 0.999 

GRU 0.999 0.999 0.999 0.999 0.999 0.999 

CNN+GRU 0.999 0.999 1.000 0.999 0.999 0.999 

Proposed 1.000 1.000 1.000 1.000 1.000 1.000 

 
The working of SMOTE-ENN allowed the model performance to experience a good 

uplift, especially in sensibility. The final ensemble model displayed near-perfect performance 
for all the parameters with an accuracy of 1.000, specificity of 1.000, sensibility of 1.000, and 
F1-Score of 1.000. This meant classifying all transactions, whether fraudulent or non-fraudu-
lent, correctly. Its AUC-ROC equal to 1.000 indicates the model's excellent class discrimina-
tion and outstanding predictive capacity. 

For instance, the MLP model achieved 94.5% accuracy before SMOTE-ENN and in-
creased to 100% after applying the technique. Similarly, the sensitivity of the Random Forest 
model increased from 74.2% to 93.6%, which is the reason for determining how effective 
SMOTE-ENN is in improving the detection of fraudulent transactions. 

 

Figure 3. Performance Metrics for Ensemble Model Before and After Applying SMOTE-ENN 

The Figure 3 illustrates the performance of the ensemble model (CNN+GRU+MLP) 
before and after applying SMOTE-ENN. Before SMOTE-ENN, the model achieved an ac-
curacy of 94.7%, a sensitivity of 80.5%, and an AUC-ROC of 0.889. After applying SMOTE-
ENN, the model achieved perfect performance across all metrics, with accuracy, specificity, 
sensitivity, precision, AUC ROC and F1-Score of 1.000. The figure highlights the significant 
improvement in the model's ability to detect fraudulent transactions after addressing class 
imbalance. 

4.2.3. Ablation Studies and Effects of SMOTE-ENN Discussion 

The study evaluated the effectiveness of integrating CNN, GRU, and MLP within an 
ensemble credit card fraud detection model. CNN demonstrated strong spatial pattern recog-
nition, while GRU effectively captured sequential dependencies in transaction histories. Com-
bining these architectures resulted in a hybrid model with improved performance across key 
metrics. The final ensemble model, incorporating all three components, achieved an accuracy 
of 94.7%. Applying SMOTE-ENN significantly improved class balance, leading to an in-
crease in recall and F1-score across all models. However, in fraud detection, precision is often 
more critical than recall due to the high cost of false positives[16]. While a higher recall 
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ensures that more fraudulent transactions are detected, an excessive increase in recall at the 
expense of precision may lead to an unmanageable number of false positives[31]. This can 
cause disruptions for legitimate users and impose unnecessary operational burdens on finan-
cial institutions. 

Before SMOTE-ENN, the ensemble model achieved a precision of 89.3%, ensuring that 
most flagged fraudulent transactions were indeed fraudulent. After applying SMOTE-ENN, 
precision increased marginally, but a deeper analysis is necessary to determine if the gain in 
recall outweighs the potential risks associated with misclassifying legitimate transactions. Pre-
cision-recall trade-offs should be carefully considered when deploying fraud detection models 
in real-world systems[32], where false positives may lead to financial and reputational conse-
quences. In addition to precision, other key metrics, such as specificity and AUC-ROC, 
should also be examined. Specificity remains critical to ensure that non-fraudulent transac-
tions are correctly classified, preventing excessive interruptions for genuine customers. AUC-
ROC provides a holistic measure of model performance, reflecting the trade-off between true 
positive and false positive rates[33]. 

Overall, while SMOTE-ENN successfully mitigates class imbalance and enhances sen-
sitivity, it is crucial to maintain an optimal balance between recall and precision. Future work 
should explore alternative resampling strategies or cost-sensitive learning techniques to im-
prove fraud detection efficacy without compromising model reliability. Additionally, evaluat-
ing model performance using precision-recall curves can provide a more comprehensive as-
sessment of its effectiveness in real-world fraud detection scenarios. These findings validate 
our approach and provide valuable insights for developing future fraud detection systems. 
The demonstrated effectiveness of combining advanced neural architectures with data-bal-
ancing techniques sets a strong foundation for further research in this critical area of financial 
security. 

5. Comparison 

To contextualize our achievements within the current research state, we systematically 
compared them with recent studies utilizing the same dataset. Table 6 presents a comprehen-
sive overview of these comparisons. 

Table 6. Comparison with related works of credit card fraud detection models. 

Models Accuracy Sensitivity Specificity Precision F1-Score AUC-ROC 

Transformer [21] 1.000 1.000 1.000 1.000 1.000 1.000 

NN + SMOTE [34] 0.999 0.999 0.999 0.998 0.999 0.999 

CNN [35] 0.999 0.999 0.999 0.999 0.999 0.999 

LSTM-GRU[7] 0.912 0.905 0.920 - 0.917 0.915 

LSTM + UMAP [36] 0.967 0.967 0.967 0.988 0.967 0.967 

EFST [16] 0.996 0.994 - 1.000 0.996 0.958 

CNN[37] 0.972 0.902 - - - - 

Proposed 1.000 1.000 1.000 1.000 1.000 1.000 

6. Conclusions 

This research developed credit card fraud detection using modern deep learning meth-
ods. It presented a novel ensemble model combining CNN, GRU, and MLP architectures. 
Spatial features from transaction data were extracted through the CNN, sequential patterns 
were learned through the GRU, and an MLP meta-learner enabled these features to function 
jointly to realize optimal classification. The model demonstrated magnificent results, attaining 
100% accuracy, sensitivity, specificity, precision, F1 score, and AUC-ROC. 

The paper adopted the balanced SMOTE-ENN sampling to overcome class imbalance, 
considerably improving the model's sensitivity, an essential aspect of fraud detection. The 
ensemble method outperformed existing models, such as CNN, LSTM, and transformer ar-
chitectures, and achieved very high detection rates and better generalization. 

The study also has a few limitations. The model was validated using only a single dataset; 
future studies should validate it by referring to multiple data sources to confirm its generali-
zation. Moreover, more investigations must be done concerning deploying the model in real-
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time systems and extending dynamic scales to adjust for bigger transaction volumes. Wide-
ranging, this research developed a strong foundation for fraud detection, achieved its goals, 
and provided meaningful insights into real-world scenarios in the financial system. 

 

Author Contributions: Conceptualisation: Lossan Bonde and Karim Bichanga; Methodol-
ogy, Lossan Bonde; Software: Karim Bichanga; Literature Review Karim Bichanga; Data cu-
ration and experiment: Karim Bichanga; Writing—original draft preparation: Karim 
Bichanga; Writing—review and editing: Lossan Bonde.; Supervision: Lossan Bonde; Project 
administration: Lossan Bonde. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data used in this research is a well-known credit card fraud 
detection dataset available on the "Kaggle platform" at https://www.kaggle.com/da-
tasets/mlg-ulb/creditcardfraud. 

Conflicts of Interest: The authors declare no conflict of interest 

References 

[1] A. Cherif, A. Badhib, H. Ammar, S. Alshehri, M. Kalkatawi, and A. Imine, “Credit card fraud detection in the era of disruptive 
technologies: A systematic review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 1, pp. 145–174, Jan. 2023, doi: 
10.1016/j.jksuci.2022.11.008. 

[2] M. Fang, J. Yin, and X. Zhu, “Transfer Learning across Networks for Collective Classification,” in 2013 IEEE 13th International 
Conference on Data Mining, Dec. 2013, pp. 161–170. doi: 10.1109/ICDM.2013.116. 

[3] V. Van Vlasselaer et al., “APATE: A novel approach for automated credit card transaction fraud detection using network-based 
extensions,” Decis. Support Syst., vol. 75, pp. 38–48, Jul. 2015, doi: 10.1016/j.dss.2015.04.013. 

[4] V. Arora, R. S. Leekha, K. Lee, and A. Kataria, “Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using 
Artificial Intelligence,” Mob. Inf. Syst., vol. 2020, no. 1, pp. 1–13, Oct. 2020, doi: 10.1155/2020/8885269. 

[5] J. Karthika and A. Senthilselvi, “An integration of deep learning model with Navo Minority Over-Sampling Technique to detect 
the frauds in credit cards,” Multimed. Tools Appl., vol. 82, no. 14, pp. 21757–21774, Jun. 2023, doi: 10.1007/s11042-023-14365-6. 

[6] R. Banger, “Modern Deep Learning Techniques for Credit Card Fraud Detection: A Review (2019 to 2023),” ResearchGate. 2023. 
doi: 10.13140/RG.2.2.32173.67043. 

[7] I. D. Mienye and Y. Sun, “A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection,” IEEE Access, vol. 
11, pp. 30628–30638, 2023, doi: 10.1109/ACCESS.2023.3262020. 

[8] N. L. Fitriyani, M. Syafrudin, G. Alfian, C. Yang, J. Rhee, and S. M. Ulyah, “Chronic Disease Prediction Model Using Integration 
of DBSCAN, SMOTE-ENN, and Random Forest,” in 2022 ASU International Conference in Emerging Technologies for Sustainability and 
Intelligent Systems (ICETSIS), Jun. 2022, pp. 289–294. doi: 10.1109/ICETSIS55481.2022.9888806. 

[9] S. Mishra et al., “Improving the Accuracy of Ensemble Machine Learning Classification Models Using a Novel Bit-Fusion Algorithm 
for Healthcare AI Systems,” Front. Public Heal., vol. 10, p. 858282, May 2022, doi: 10.3389/fpubh.2022.858282. 

[10] E. Esenogho, I. D. Mienye, T. G. Swart, K. Aruleba, and G. Obaido, “A Neural Network Ensemble With Feature Engineering for 
Improved Credit Card Fraud Detection,” IEEE Access, vol. 10, pp. 16400–16407, 2022, doi: 10.1109/ACCESS.2022.3148298. 

[11] Y. Xie, G. Liu, C. Yan, C. Jiang, and M. Zhou, “Time-Aware Attention-Based Gated Network for Credit Card Fraud Detection by 
Extracting Transactional Behaviors,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 3, pp. 1004–1016, Jun. 2023, doi: 
10.1109/TCSS.2022.3158318. 

[12] P. R. Vardhani, Y. I. Priyadarshini, and Y. Narasimhulu, “CNN Data Mining Algorithm for Detecting Credit Card Fraud,” in Soft 
Computing and Medical Bioinformatics, 2019, pp. 85–93. doi: 10.1007/978-981-13-0059-2_10. 

[13] C. M. Nalayini, J. Katiravan, A. R. Sathyabama, P. V Rajasuganya, and K. Abirami, “Identification and Detection of Credit Card 
Frauds Using CNN,” in International Conference on Computers, Management \& Mathematical Sciences, Springer, 2023, pp. 267–280. doi: 
10.1007/978-3-031-25194-8_22. 

[14] K. Fu, D. Cheng, Y. Tu, and L. Zhang, “Credit Card Fraud Detection Using Convolutional Neural Networks,” in Neural Information 
Processing: 23rd International Conference, {ICONIP} 2016, Kyoto, Japan, October 16–21, 2016, Proceedings, Part {III} 23, Springer, 2016, pp. 
483–490. doi: 10.1007/978-3-319-46675-0_53. 

[15] D. S. Sisodia, N. K. Reddy, and S. Bhandari, “Performance evaluation of class balancing techniques for credit card fraud detection,” 
in 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Sep. 2017, pp. 2747–2752. doi: 
10.1109/ICPCSI.2017.8392219. 

[16] M. I. Akazue, I. A. Debekeme, A. E. Edje, C. Asuai, and U. J. Osame, “UNMASKING FRAUDSTERS: Ensemble Features 
Selection to Enhance Random Forest Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 201–211, Dec. 2023, doi: 
10.33633/jcta.v1i2.9462. 

[17] X. Li et al., “Transaction Fraud Detection Using GRU-centered Sandwich-structured Model,” in 2018 IEEE 22nd International 
Conference on Computer Supported Cooperative Work in Design ((CSCWD)), May 2018, pp. 467–472. doi: 10.1109/CSCWD.2018.8465147. 



Journal of Computing Theories and Applications 2025 (February), vol. 2, no. 3, Bonde and Bichanga. 394 
 

 

[18] D. R. I. M. Setiadi, S. Widiono, A. N. Safriandono, and S. Budi, “Phishing Website Detection Using Bidirectional Gated Recurrent 
Unit Model and Feature Selection,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 75–83, Jul. 2024, doi: 10.62411/faith.2024-15. 

[19] A. Çetin and S. Öztürk, “Comprehensive Exploration of Ensemble Machine Learning Techniques for IoT Cybersecurity Across 
Multi-Class and Binary Classification Tasks,” J. Futur. Artif. Intell. Technol., vol. 1, no. 4, pp. 371–384, Feb. 2025, doi: 
10.62411/faith.3048-3719-51. 

[20] Z. S. Dhahir, “A Hybrid Approach for Efficient DDoS Detection in Network Traffic Using CBLOF-Based Feature Engineering 
and XGBoost,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 174–190, Sep. 2024, doi: 10.62411/faith.2024-33. 

[21] A. Iqbal and R. Amin, “Time series forecasting and anomaly detection using deep learning,” Comput. Chem. Eng., vol. 182, p. 108560, 
Mar. 2024, doi: 10.1016/j.compchemeng.2023.108560. 

[22] A. Pathirana et al., “A Reinforcement Learning-Based Approach for Promoting Mental Health Using Multimodal Emotion 
Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 124–142, Sep. 2024, doi: 10.62411/faith.2024-22. 

[23] A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling, “Deep learning detecting fraud in credit card transactions,” in 2018 
Systems and Information Engineering Design Symposium (SIEDS), Apr. 2018, pp. 129–134. doi: 10.1109/SIEDS.2018.8374722. 

[24] M. Liang et al., “A Stacking Ensemble Learning Framework for Genomic Prediction,” Front. Genet., vol. 12, p. 600040, Mar. 2021, 
doi: 10.3389/fgene.2021.600040. 

[25] M. Y. Turaba, M. Hasan, N. I. Khan, and H. A. Rahman, “Fraud Detection During Financial Transactions Using Machine Learning 
and Deep Learning Techniques,” in 2022 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), Oct. 
2022, pp. 1–8. doi: 10.1109/CCCI55352.2022.9926503. 

[26] Asniar, N. U. Maulidevi, and K. Surendro, “SMOTE-LOF for noise identification in imbalanced data classification,” J. King Saud 
Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3413–3423, Jun. 2022, doi: 10.1016/j.jksuci.2021.01.014. 

[27] C. Bhavani and A. Govardhan, “Cervical cancer prediction using stacked ensemble algorithm with SMOTE and RFERF,” Mater. 
Today Proc., vol. 80, pp. 3451–3457, 2023, doi: 10.1016/j.matpr.2021.07.269. 

[28] D. R. I. M. Setiadi, K. Nugroho, A. R. Muslikh, S. W. Iriananda, and A. A. Ojugo, “Integrating SMOTE-Tomek and Fusion Learning 
with XGBoost Meta-Learner for Robust Diabetes Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 23–38, May 2024, 
doi: 10.62411/faith.2024-11. 

[29] T. Le, M. T. Vo, B. Vo, M. Y. Lee, and S. W. Baik, “A Hybrid Approach Using Oversampling Technique and Cost‐Sensitive 
Learning for Bankruptcy Prediction,” Complexity, vol. 2019, no. 1, p. 8460934, Jan. 2019, doi: 10.1155/2019/8460934. 

[30] Z.-H. Zhou, Ensemble Methods. Chapman and Hall/CRC, 2012. doi: 10.1201/b12207. 
[31] J. Chung and K. Lee, “Credit Card Fraud Detection: An Improved Strategy for High Recall Using KNN, LDA, and Linear 

Regression,” Sensors, vol. 23, no. 18, p. 7788, Sep. 2023, doi: 10.3390/s23187788. 
[32] F. Zhang, “Improved credit card fraud detection method based on XGBoost algorithm,” BCP Bus. Manag., vol. 38, pp. 2888–2895, 

Mar. 2023, doi: 10.54691/bcpbm.v38i.4206. 
[33] J. Cook and V. Ramadas, “When to consult precision-recall curves,” Stata J. Promot. Commun. Stat. Stata, vol. 20, no. 1, pp. 131–148, 

Mar. 2020, doi: 10.1177/1536867X20909693. 
[34] M. Zhu, Y. Zhang, Y. Gong, C. Xu, and Y. Xiang, “Enhancing Credit Card Fraud Detection: A Neural Network and SMOTE 

Integrated Approach,” J. Theory Pract. Eng. Sci., vol. 4, no. 02, pp. 23–30, Feb. 2024, doi: 10.53469/jtpes.2024.04(02).04. 
[35] M. N. Yousuf Ali, T. Kabir, N. L. Raka, S. Siddikha Toma, M. L. Rahman, and J. Ferdaus, “SMOTE Based Credit Card Fraud 

Detection Using Convolutional Neural Network,” in 2022 25th International Conference on Computer and Information Technology (ICCIT), 
Dec. 2022, pp. 55–60. doi: 10.1109/ICCIT57492.2022.10054727. 

[36] I. Benchaji, S. Douzi, B. El Ouahidi, and J. Jaafari, “Enhanced credit card fraud detection based on attention mechanism and LSTM 
deep model,” J. Big Data, vol. 8, no. 1, p. 151, Dec. 2021, doi: 10.1186/s40537-021-00541-8. 

[37] E. Ajitha, S. Sneha, S. Makesh, and K. Jaspin, “A Comparative Analysis of Credit Card Fraud Detection with Machine Learning 
Algorithms and Convolutional Neural Network,” in 2023 International Conference on Advances in Computing, Communication and Applied 
Informatics (ACCAI), May 2023, pp. 1–8. doi: 10.1109/ACCAI58221.2023.10200905. 

 
 


