
 

Journal of Computing Theories and Applications ISSN:3024-9104   

 

 
DOI : 10.62411/jcta.12255 publikasi.dinus.ac.id/index.php/jcta/ 

Research Article 

Feature Fusion with Albumentation for Enhancing     
Monkeypox Detection Using Deep Learning Models 

Nizar Rafi Pratama 1, De Rosal Ignatius Moses Setiadi 1,2,*, Imanuel Harkespan 1, and Arnold Adimabua Ojugo 3  

1 Faculty of Computer Science, Univesitas Dian Nuswantoro, Semarang 50131, Indonesia;      
e-mail : nizarrafipratama@gmail.com; harkespan@dsn.dinus.ac.id  

2 Research Center for Quantum Computing and Materials Informatics, Faculty of Computer Science, Dian 
Nuswantoro University, Semarang 50131, Indonesia; e-mail : moses@dsn.dinus.ac.id 

3 Department of Computer Science, Federal University of Petroleum Resources Effurun, Nigeria;     
e-mail: ojugo.arnold@fupre.edu.ng 

* Corresponding Author : De Rosal Ignatius Moses Setiadi 

Abstract: Monkeypox is a zoonotic disease caused by Orthopoxvirus, presenting clinical challenges 

due to its visual similarity to other dermatological conditions. Early and accurate detection is crucial to 

prevent further transmission, yet conventional diagnostic methods are often resource-intensive and 

time-consuming. This study proposes a deep learning-based classification model by integrating Xcep-

tion and InceptionV3 using feature fusion to enhance performance in classifying Monkeypox skin le-

sions. Given the limited availability of annotated medical images, data augmentation was applied using 

Albumentation to improve model generalization. The proposed model was trained and evaluated on 

the Monkeypox Skin Lesion Dataset (MSLD), achieving 85.96% accuracy, 86.47% precision, 85.25% 

recall, 78.43% specificity, and an AUC score of 0.8931, outperforming existing methods. Notably, data 

augmentation significantly improved recall from 81.23% to 85.25%, demonstrating its effectiveness in 

enhancing sensitivity to positive cases. Ablation studies further validated that augmentation increased 

overall accuracy from 82.02% to 85.96%, emphasizing its role in improving model robustness. Com-

parative analysis with other models confirmed the superiority of our approach. This research enhances 

automated Monkeypox detection, offering a robust and efficient tool for low-resource clinical settings. 

The findings reinforce the potential of feature fusion and augmentation in improving deep learning-

based medical image classification, facilitating more reliable and accessible disease identification. 

Keywords: Albumentation; Feature fusion; InceptionV3; Medical image classification; Monkeypox 

classification; Xception. 

 

1. Introduction 

Monkeypox is a rare zoonotic disease caused by an Orthopoxvirus. The virus was first 
discovered in laboratory monkeys in 1958 and in humans in the Democratic Republic of the 
Congo in 1970[1]. Initially confined to Central and West Africa, monkeypox cases have now 
spread to non-endemic countries, including the Americas, Europe, and Asia, prompting the 
WHO to declare the disease a Public Health Emergency of International Concern (PHEIC) 
in May 2022 and August 2024[2]. Clinical manifestations of monkeypox include fever, lym-
phadenopathy, and skin lesions that often resemble chickenpox or measles. This poses chal-
lenges in clinical diagnosis, especially in areas with limited diagnostic facilities[3]. Therefore, 
rapid and accurate identification methods are needed to prevent further spread. In this con-
text, emerging technologies, particularly machine learning (ML) and deep learning (DL), offer 
promising solutions to improve the speed and accuracy of monkeypox detection. 

In the field of ML and DL, with its extraordinary capabilities in medical analysis[4], it 
has been proven effective in diagnosing various diseases using tabular, signal, image, and 
multi-modal data inputs[5]–[10]. Specifically in images, DL allows models to automatically 
extract important features from images, resulting in higher accuracy in disease identifica-
tion[11], [12]. One of the most widely used approaches is Convolutional Neural Networks 
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(CNN), which can recognize complex patterns in images through convolutional layers tailored 
for specific classification tasks[13], [14]. In addition, transfer learning techniques are gaining 
popularity because they can leverage models that have been previously trained on large da-
tasets, thereby improving model performance on similar tasks while reducing computational 
time and cost[15]. 

Previous studies have demonstrated the effectiveness of CNN architectures in diagnos-
ing various skin conditions. Gouda et al.[16] used the InceptionV3 architecture to detect and 
classify skin cancer on a dataset of 3,533 skin lesion images, including 1,760 benign and 1,773 
malignant lesions, and achieved an accuracy of 85.7%. Another study by Erdem et al. [17] 
used the Xception to classify a dataset of 10,000 skin lesion images with seven different classes 
(dermatofibroma, vascular lesions, actinic keratoses, basal cell carcinoma, benign keratosis, 
melanoma, and melanocytic nevus), achieving an accuracy of 88.92%. Recent advances in DL 
have shown that combining multiple architectures through feature fusion can improve clas-
sification performance. Feature fusion integrates the strengths of multiple models, creating 
richer feature representation and higher accuracy[18], [19]. Roseline et al.[20] successfully ap-
plied this approach by combining MobileNetV2 and Xception for skin cancer classification, 
resulting in an accuracy of up to 97.56%. 

Data augmentation is an important technique in image processing that aims to expand 
training data distribution and improve the generalization deep learning models. Transfor-
mations such as flipping, rotation, translation, and brightness changes allow models to learn 
from a wider variety, reducing the risk of overfitting. Previous studies have shown that aug-
mentation can improve the accuracy of medical image classification, especially when the da-
taset is limited[23]–[25]. Albumentation is an image augmentation library designed to improve 
efficiency and flexibility in medical image processing. By providing a variety of adaptive trans-
formations, this library allows for richer data manipulation than conventional methods while 
still preserving the essential characteristics of the original image[26]. Several studies have 
shown that Albumentation-based augmentation can improve model performance[27]–[29].  

This study proposes a novel approach by integrating Xception and InceptionV3 through 
feature fusion for monkeypox skin lesion image classification. Xception is known for its effi-
ciency in extracting features using depthwise separable convolutions, resulting in high accu-
racy with fewer parameters[21]. Meanwhile, InceptionV3, through its inception module, ex-
cels in capturing complex patterns of different feature sizes in images[22]. By combining these 
two architectures, this study aims to leverage the complementary strengths of both models, 
thereby improving the accuracy and effectiveness in monkeypox lesion classification. Based 
on the literature review above, this study contributes to: 

• Xception and InceptionV3 are used as base models to extract key features from mon-
keypox skin lesion images. 

• The concatenation method is used to create a combined feature representation of both 
models to strengthen the performance of the proposed model. 

• Adding augmentation data with albumentation improves the proposed model's perfor-
mance and generalization. 

• Evaluating the performance of the proposed model on the Monkeypox skin lesion da-
taset (MSLD) by conducting an ablation study and comparing it with related work based 
on standard classification metrics. 
The rest of this paper is organized as follows: Section 2 discusses related research on 

medical image classification and the deep learning approach used. Section 3 describes the 
methodology, including model architecture, data preprocessing, and augmentation strategy 
applied. Section 4 presents the experimental results and model performance analysis based 
on key evaluation metrics. Section 5 discusses an ablation study to measure the impact of 
augmentation and compares it with previous methods. Section 6 concludes the research re-
sults and proposes further research directions. 

2. Literature Review 

2.1. Xception Transfer Learning 

Xception is a deep convolutional neural network architecture based on depthwise 
separable convolutions, a more efficient variant of the convolution operation[21]. This 
architecture enables higher computational efficiency and fewer parameters while still 
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achieving high performance on complex image recognition tasks. The Xception model has 
demonstrated strong performance in various computer vision tasks, including fine-grained 
image classification, due to its ability to learn complex spatial patterns[17]. In this study, 
Xception serves as the first baseline model for feature extraction, capturing various visual 
patterns in images. More details of the Xception architecture are presented in Table 1. 

Table 1. Xception Architecture. 

Layer Description Main function 

Stem (Initial Lay-
ers) 

The initial convolutional layer reduces the image 
dimensions (default = 299×299×3) and extracts 

basic features for further processing. 

Prepares the image for further 
processing by reducing its initial 

dimensions. 

Depthwise Sepa-
rable Convolu-

tions 

Uses depthwise convolution to process each 
channel separately and combines the results us-

ing pointwise convolution. 

Reduces the number of parame-
ters, enabling more efficient fea-

ture processing. 

Residual Con-
nections 

Connects layers by introducing shortcut paths to 
facilitate information flow. 

Prevents information loss during 
network propagation. 

Fully Connected 
(Dense) 

A fully connected layer that links information 
from all layers and produces the final output. 

Organizes the learned infor-
mation and generates the final 

prediction. 

Softmax Output Activation function for multi-class classification 
that outputs class probabilities. 

Produces probability values for 
different output classes. 

 
The Xception architecture introduces a more efficient approach to convolution by using 

depthwise separable convolutions. Unlike standard convolutions, this technique separates the 
convolution process into two steps: a depthwise convolution that processes each input chan-
nel separately. Then the results are combined using a pointwise convolution. This approach 
reduces the number of parameters in the model, increasing computational efficiency without 
compromising the quality of the results. In addition, Xception also adopts residual connec-
tions, which allow for better information flow between deeper and earlier layers, helping to 
prevent the loss of important information and addressing the vanishing gradients problem 
that can occur in deeper networks. After the features are processed, the information is pro-
cessed by a fully connected layer to produce the final prediction. Then, a Softmax activation 
function is used to classify the results into relevant classes. 

2.2. InceptionV3 Transfer Learning 

InceptionV3 is a DL model designed to optimize computational resources while main-
taining high accuracy[30]. The core concept of InceptionV3 is the Inception module, which 
applies multiple types of convolutional filters of different sizes to the input data, allowing the 
model to learn features at multiple scales. This modular architecture allows InceptionV3 to 
capture both small- and large-scale patterns in images efficiently, making it well-suited for 
image classification tasks[22], [31], [32]. In this study, InceptionV3 is used with Xception to 
extract complementary features, which are combined through feature fusion. More details of 
the InceptionV3 architecture are presented in Table 2.  

InceptionV3 combines several techniques to improve the efficiency and performance of 
the model in image processing. The architecture starts with stem layers, a series of initial 
convolutions that reduce the dimensionality of the image and extract basic features. One of 
the key features of InceptionV3 is Inception Modules, which allow the model to process 
different filter sizes in a single layer to capture different scales of spatial features from the 
image. This facilitates the model in learning features with varying complexity. In addition, 
factorized convolutions are used to optimize the number of parameters and reduce the com-
putational burden, maintaining efficiency without compromising performance. To make the 
model more stable and generalize better, InceptionV3 also includes auxiliary classifiers that 
help prevent overfitting during training. At the end of the architecture, fully connected layers 
combine the extracted features to make predictions, and the results are processed through a 
Softmax activation function to assign probabilities to the output classes. 
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Table 2. InceptionV3 Architecture. 

Layer Deskripsi Fungsi Utama 

Stem (Initial  
Layers) 

The initial convolutional layer is used to reduce 
image dimensions (default = 299×299×3) and 
extract basic features for further processing. 

Prepares the image for further 
processing by reducing its initial 

dimensions. 

Depthwise   
Separable   

Convolutions 

Uses depthwise convolution to process each 
channel separately and combines the results us-

ing pointwise convolution. 

Reduces the number of parame-
ters, allowing more efficient fea-

ture processing. 

Residual     
Connections 

Connects layers by introducing shortcut paths to 
facilitate information flow. 

Prevents information loss during 
network propagation. 

Fully Connected 
(Dense) 

A fully connected layer that links information 
from all layers and generates the final output. 

Organizes learned information 
and produces the final prediction. 

Softmax Output 
Activation function for multi-class classification 

that outputs class probabilities. 
Produces probability values for 

different output classes. 

2.3. Feature Fusion 

Feature fusion is a technique used in deep learning to combine features extracted from 
different models or layers to create a richer and more informative feature representation[33]. 
This technique allows a model to combine information from different sources that carry 
complementary information to each other, such as spatial patterns, textures, or high-level 
characteristics of an image. This feature fusion is often performed through a concatenate 
operation, where feature maps from different models or layers are combined along a feature 
dimension to form a unified feature vector[34]. By combining information learned from 
different models, this technique can improve the model's ability to solve more complex object 
detection or classification problems. In addition, feature fusion can also improve the 
generalization ability of a model because the model does not rely solely on one type of feature 
or model to make predictions. By combining different features, the model can capture more 
comprehensive and more varied information, which in turn helps distinguish between very 
similar classes or identify more complex patterns. This technique has been used in various 
applications, such as object detection, image classification, and face recognition, where the 
information generated from multiple levels of data processing provides advantages in 
reducing prediction errors and improving overall model accuracy[35]–[37]. 

2.4. Related works 

This section further discusses some related studies that inspired this research, including 
some that have been mentioned in the introduction. Gouda et al.[16] used the InceptionV3 
architecture to detect and classify skin cancer. The dataset used consisted of 3,533 images of 
skin lesions divided into two classes, namely benign lesions and malignant lesions. This 
dataset was split into training and testing data with a ratio of 8:2, allowing the model to learn 
optimally. The results showed that the InceptionV3 model achieved an accuracy of 85.7%, 
indicating the potential of this architecture in medical image classification.  

Ali et al.[38] conducted a study using pre-trained models such as VGG-16, ResNet50, 
and InceptionV3 to classify monkeypox and other diseases such as chickenpox and measles. 
In this study, the Monkeypox Skin Lesion Dataset (MSLD) was developed which consisted 
of 228 images classified into two classes: monkeypox and others. Among the tested models, 
ResNet50 showed the best performance with an accuracy of 82.96%, a precision of 87%, a 
recall of 83%, and an F1 score of 84%. Sahin et al. [39] used the same MSLD dataset but with 
a different approach, namely using the MobileNetV2 and EfficientNetB0 architectures. The 
results showed that MobileNetV2 was superior to EfficientNetB0.  

Roseline et al. [20] focused their research on improving the accuracy of skin cancer 
detection and classification through the feature fusion method. The dataset used was SC, 
consisting of 288 images classified into two classes: cancer and non-cancer. In this study, they 
combined the MobileNetV2 and Xception architectures to take advantage of the advantages 
of each model. The results showed a significant increase in performance with an accuracy of 
97.56%, a precision of 93.33%, a recall of 100%, and an F1 score of 96.55%. This feature 
fusion approach shows great potential, but has not been applied to monkeypox disease 
classification.  
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Based on the findings of previous studies, this study attempts to explore further the use 
of feature fusion from two powerful architectures, namely Xception and InceptionV3. This 
study aims to improve monkeypox disease classification performance by utilizing both 
architectures' advantages. This approach is expected to provide new contributions in deep 
learning-based disease classification, especially on the limited MSLD dataset. 

3. Proposed Method 

The proposed approach in this study aims to classify monkeypox disease by combining 
features from two models, namely Xception and InceptionV3, by utilizing the serial feature 
fusion technique. The diagram of the proposed method is shown in Figure 1. The stages 
carried out in this study are explained as follows: 

 

Figure 1. Proposed model. 

3.1. Dataset 

The data used in this study were obtained from the Kaggle site entitled "Monkeypox 
Skin Lesion Dataset," which was uploaded in 2022 by nafin59. This dataset is publicly 
available and can be accessed via the URL 
https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset. The dataset 
consists of 228 images of monkeypox skin lesions covering various lesion conditions. The 
class division will be shown in Table 3. All images in this dataset have a resolution of 224×224 
pixels and are used to detect and classify lesions related to monkeypox and those that are not. 

Table 3. Dataset distribution. 

Class  Number of images 

Monkeypox 102 

Others 126 

Total 228 

3.2. Preprocessing 

The preprocessing stage is carried out to prepare the dataset for optimal use in the model 
training process. This process is designed to ensure that the images have adequate quality and 
variation so that the model can learn better from the data. The preprocessing steps include: 
1. The images in the dataset already have a resolution of 224 × 224 pixels, so they do not 

require additional resizing before augmentation. This native resolution provides the flex-
ibility to apply augmentations such as rotation, translation, and other transformations 
without sacrificing important details in the image. This resolution is maintained because 
it matches the size of the original dataset, so there is no loss of important visual details 
during preprocessing. 

2. Data Augmentation is carried out on the training dataset with albumination[26], and the 
parameters and types of augmentation are presented in Table 4. 

3. Image pixel values are normalized with a scale (1./255) to reduce data variability. 
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Table 4. Augmentation type used and its parameter values. 

Augmentation Types  Values 

Horizontal Flip p = 0.5 

Vertical Flip p = 0.5 

Rotation ±30° (p = 0.5) 

Shift ±5% (p = 0.5) 

Scale ±10% (p = 0.5) 

Rotate ±15° (p = 0.5) 

Random Brightness & Contrast p = 0.3 

Hue Shift ±10 (p = 0.3) 

Saturation Shift ±20 (p = 0.3) 

Value Shift ±10 (p = 0.3) 

CLAHE p = 0.2 

Gaussian Blur Kernel size (3,5) (p = 0.3) 

Gaussian Noise Variance (10.0, 50.0) (p = 0.3) 

3.3. Model Configuration 

The proposed model combines the strengths of two deep learning models, namely In-
ceptionV3 and Xception. InceptionV3 is designed to capture multi-scale features from images 
by utilizing different filter sizes to detect patterns at different resolution levels. This is very 
effective in capturing visual variations that occur in images of monkeypox lesions with differ-
ent sizes and textures. Meanwhile, Xception uses depthwise separable convolutions that are 
more efficient in capturing complex spatial features with fewer parameters, allowing for faster 
and more accurate detection of images containing fine details of monkeypox.  

By default, InceptionV3 and Xception generate complex spatial feature maps in the last 
convolution layer. Therefore, both models are set with include_top=False, which removes 
the fully connected layer for classification so that it is only used as a feature extractor. The 
model input is set to 224×224 pixels, adjusted to the size of the original dataset, ensuring that 
the extracted features are representative enough. The features from both models are then 
converted into the same vector with Global Average pooling and combined using the Con-
catenate function, resulting in a combined feature vector. This vector is processed through a 
dense layer with 256 units and ReLU activation. After that, the output is forwarded to an 
output layer with one unit and a sigmoid activation function for binary classification between 
monkeypox and others. 

Table 5. Proposed model configuration. 

Function Configuration 

Feature Extraction InceptionV3 (pretrained with ImageNet weights, include_top=False, input 
size 224×224×3, all layers frozen) 

Xception (pretrained with ImageNet weights, include_top=False, input size 
224×224×3, all layers frozen) 

Global average  
pooling Layers 

GAP: Converts the 3D output from InceptionV3 and Xception into a 1D vec-
tor. 

Feature Fusion Concatenate function merges feature vectors from the transformed outputs of 
InceptionV3 and Xception. 

Classification Layers Dense Layer: A dense layer with 256 units and ReLU activation. 

Output Layer: A dense layer with 1 unit and sigmoid activation. 

Training          
Configuration 

Optimizer: Adam with a learning rate of 1 × 10⁻⁴. 

Loss Function: Binary Crossentropy. 

Metrics: Accuracy. 

Epochs: 30. 

Batch size: 16. 

Validation: 5-fold stratified cross-validation. 
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Adam optimizer was chosen to optimize the model training because of its adaptive ability 
to handle the dynamics of the loss function during training. Adam allows the model to reach 
convergence faster without requiring much manual adjustment of the hyperparameters. A 

learning rate of 1 × 10⁻⁴ was chosen to maintain a balance between the learning rate and the 
stability of parameter updates, preventing overfitting or divergence during training. More de-
tails of the proposed model design are presented in Table 5. 

3.4. Evaluation Metrics 

A confusion matrix is an important tool for evaluating the performance of a classification 
model. It presents the number of True Positive (TP), False Positive (FP), True Negative (TN), 
and False Negative (FN) predictions, which provide insight into the types of errors the model 
makes. In the context of this study, TP means cases that are actually infected and predicted 
to be infected. TN means cases that are actually uninfected and predicted to be uninfected. 
FP means cases that are actually uninfected but predicted to be infected. Meanwhile, FN 
means cases that are actually infected but predicted to be uninfected. A confusion matrix is 
reported as aggregating all matrices generated during the Stratified K-Fold Cross-Validation 
process. The confusion matrix is visualized as a heatmap, which helps identify the pattern of 
model errors in distinguishing classes, which is presented in Figure 2. 

 

Figure 2. Confusion matrix visualization. 

From the confusion matrix, various evaluation metrics can be calculated, such as: accu-
racy, precision, recall, specificity, and F1-score. Specificity value measures how well the model 
identifies uninfected individuals as defined in Equation (1). A high Specificity value indicates 
that the model rarely gives false positives, thus effectively distinguishing healthy individuals. 
Precision measures the accuracy of the model's positive predictions as presented in Equation 
(2). High precision indicates that when the model predicts someone is infected, the prediction 
is likely to be correct. Recall or sensitivity measures how many infected patients are success-
fully detected by the model. High recall means that the model rarely misses positive cases and 
is one of the important things in the medical field[40], [41], which is calculated in Equation 
(3). F1-Score is the harmonic mean between precision and recall, which is calculated by 
Equation (4). A high F1-score indicates an optimal balance between false positives and false 
negatives[42]. Accuracy indicates the proportion of correct predictions to the total 
predictions, see Equation (5). However, prioritizing accuracy can be misleading in imbalanced 
datasets, particularly in medical contexts. 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  (1) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (2) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (3) 
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F1 = 2 ×
Precision × Recall

Precision + Recall
  (4) 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
  (5) 

The Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) 
are crucial metrics in evaluating binary classification models, especially in the medical context. 
ROC curve shows the ability of the model to distinguish two conditions, for example, be-
tween infected and uninfected patients[43]. In the ROC graph, the y-axis represents the True 
Positive Rate (TPR), which describes the ability of the model to identify truly infected patients 
(recall)[44], while the x-axis represents the False Positive Rate (FPR), which shows how many 
healthy patients are wrongly classified as infected[43]. TPR and FPR are calculated using 
Equation (6) and (7), respectively. 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (6) 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
  (7) 

The closer the ROC curve is to the upper left corner (0,1), the better the model distin-
guishes between the two conditions. AUC measures the area under the ROC curve and gives 
a value between 0 and 1, which describes the model's ability to distinguish between the two 
conditions. AUC is calculated as the numerical integral of the ROC curve, which is defined 
in Equation (8), and numerically, AUC is calculated using a numerical approach such as the 
trapezoidal rule, where the area is calculated by summing the contributions of each segment 
based on the coordinates (FPR, TPR) calculated in Equation (9). 

AUC = ∫ 𝑇𝑃𝑅(𝑥)𝑑𝑥

1

0

  (8) 

AUC = ∑(FPR𝑖 − FPR𝑖−1)

𝑛

𝑖=0

×
TPR𝑖 − TPR𝑖−1

2
  (9) 

The 𝑑𝑥 variable represents the change in FPR value along the x-axis in the ROC curve graph. 
With an AUC value close to 1, the model performs well in distinguishing infected and unin-
fected patients. Conversely, an AUC value close to 0.5 indicates that the model is no better 
than random guessing. The n value is the number of threshold points used to generate the 
coordinates (FPR, TPR) along the ROC curve. The larger the n value, the more accurate the 
AUC estimate is because more segments are used in calculating the area under the curve. 

4. Results and Discussion 

This study uses the Monkeypox Skin Lesion Dataset (MSLD) from the Kaggle site. This 
dataset consists of 228 images of monkeypox skin lesions, covering various lesion conditions 
with a resolution of 224×224 pixels, which allows the application of various efficient image 
processing techniques. The images in this dataset are in RGB color format, thus including 
richer color information for further analysis. This dataset was developed through web-scrap-
ing techniques from various sources, including news portals, websites, and publicly accessible 
case reports, resulting in a dataset with variations in lighting, background, and differences in 
the position and shape of the lesions. This diversity allows the model to be more adaptive in 
recognizing various Monkeypox skin lesion conditions. This dataset is divided into two clas-
ses, namely Monkeypox (102 images) and Others (126 images). Sample images contained in 
the MSLD dataset are presented in Figure 3. 

As explained previously, in the preprocessing stage, the images in this dataset already 
have a resolution that meets the model's needs, which is 224 × 224 pixels, so no additional 
resizing process is required. Furthermore, data augmentation techniques are applied to the 
training data to increase image diversity and help the model learn better. The augmentation 
parameters used are listed in Table 4, and sample results are presented in Figure 4. 
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Furthermore, pixel value normalization is carried out by dividing each pixel value by 255, to 
reduce data variability and improve model performance. 

 
 (a) 

 
(b) 

Figure 3. Sample dataset of MSLD (a) Monkeypox class; (b) other class. 

 
 (a) 

 
(b) 

Figure 4. Sample dataset augmentation (a) Monkeypox class; (b) other class. 

After preprocessing and data augmentation, the model was trained using a combination 
of Xception and InceptionV3 architectures with predetermined configurations. The training 
process was carried out for 30 epochs, with performance metrics monitoring on the training 
and validation datasets. To evaluate the stability of the model and its ability to generalize, 
accuracy and loss were compared between the training and validation data in each epoch. 
Figure 5a shows the development of training and validation accuracy during the training pro-
cess. The significant trend of increasing training accuracy in the early epochs indicates that 
the model can learn from the data well. Meanwhile, Figure 5b illustrates the training and 
validation loss per epoch. The steady decrease in training loss indicates that the model opti-
mizes parameters to reduce error. 
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Figure 5. Training and validation accuracy and loss per epoch from a single fold in k-fold cross-
validation: (a) training and validation accuracy; (b) training and validation loss. 

Next, the model evaluation uses testing data, which is measured by a confusion matrix 
and classification report. Confusion matrix (Figure 6) and classification report (Figure 7) are 
presented based on a 5-fold validation aggregation. Based on the confusion matrix, the model 
performs very well in classifying Monkeypox and Others. Of the 90 Monkeypox samples, 80 
were correctly classified (TP), while 10 were misclassified as Others (FP). For the Others 
class, 116 samples were correctly classified (TN), while 22 were misclassified as Monkeypox 
(FP). 

 

Figure 6. Confusion matrix results from aggregated 5-fold confusion matrix. 

 

Figure 7. Classification report of the proposed model from aggregated 5-fold confusion matrix. 
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From the classification report, it can be seen that the overall accuracy is 86%, as well as 
the macro average recall of 85% and F1-score of 86%, the model is proven to have good 
generalization even though there are indications of overfitting during training and validation. 
However, the lower recall for Monkeypox indicates that the model is more likely to miss some 
positive cases, which must be fixed to detect the disease more optimally. Model strengthening 
can be done by adjusting the decision threshold, increasing the weight of False Negative er-
rors, and more specific data augmentation to overcome recurring misclassification. However, 
overall, the model still has very good generalization to data that has never been seen before. 
This shows that the feature fusion strategy of Xception and InceptionV3, as well as the data 
augmentation used, have helped improve the robustness of the model in handling variations 
in actual data. 

Model performance was also analyzed using the ROC curve and AUC, as shown in Fig-
ure 8. The AUC value of 0.8931 indicates that the model has very good classification ability, 
with a high probability of distinguishing between infected and uninfected patients. AUC is a 
very important metric in medical datasets because it reflects the model's ability to recognize 
positive and negative cases comprehensively without being affected by the possibly imbal-
anced class distribution. An AUC value close to 1.0 indicates that the model has a minimal 
error rate in detecting truly infected patients (TP) while maintaining a low FP rate. This high 
performance on ROC-AUC indicates that although the recall of the Monkeypox class is 
slightly lower than the Others class, the model still has excellent overall detection capability. 
Considering this high AUC value, the model is reliable for medical classification applications, 
although improving the recall for Monkeypox cases still needs to be a focus in further devel-
opment. 

 

Figure 8. ROC and AUC results. 

5. Ablation Study and Comparison 

An ablation study was conducted to evaluate the impact of data augmentation on model 
performance. Based on Table 6, the proposed method significantly improves all metrics after 
augmentation. Without augmentation, the proposed model achieves an accuracy of 82.02%, 
which increases to 85.96% after augmentation. In addition, the precision increases from 
82.03% to 86.47%, recall from 81.49% to 85.25%, and specificity from 76.29% to 78.43%, 
indicating an improvement in the model's ability to recognize positive cases while maintaining 
balance with the negative class.  

Data augmentation also positively impacts the base model, with InceptionV3 improving 
from 81.58% to 82.46%, while Xception improves from 79.82% to 81.14% after augmenta-
tion. This ablation study confirms that augmentation improves accuracy and model generali-
zation, with the most significant impact seen on the feature fusion model compared to the 
individual models. The 3.76% increase in recall of the proposed model indicates that augmen-
tation helps the model recognize more positive cases that were previously missed, which is 
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very important in disease detection. Although the AUC of the proposed model slightly de-
creased from 0.9050 to 0.8931 after augmentation, the increase in recall indicates that the 
model is more sensitive to identifying monkeypox lesions, which is more important in medical 
applications than a slight decrease in classification balance. 

Table 6. Ablation study. 

Model DA Accuracy Precision Recall F1-score Specificity AUC 

InceptionV3 no 81.58 81.63 81.00 81.21 75.19 0.8964 

Xception no 79.82 79.67 79.41 79.52 75.38 0.8774 

Proposed no 82.02 82.03 81.49 81.68 76.29 0.9050 

InceptionV3 yes 82.46 82.43 81.98 82.15 77.33 0.8769 

Xception yes 81.14 82.08 80.04 80.44 69.48 0.8774 

Proposed yes 85.96 86.47 85.25 85.61 78.43 0.8931 
*DA: Data augmentation. 

 
The model was compared with previous studies using the same dataset for further vali-

dation. Table 7 shows that the proposed model outperforms the method developed by Ali et 
al., with an accuracy of 85.96%, higher than 82.96% (Ali et al.). In addition, the proposed 
model also excels in precision (86.46%), recall (85.25%), and F1-score (86.61%), indicating a 
significant improvement in the balance between false positives and false negatives. Unlike 
previous studies, this model also comes with a specificity of 78.43% and an AUC Score of 
0.8931, confirming its reliability in identifying Monkeypox and non-Monkeypox diseases 
more accurately. 

Table 7. Comparison with related work. 

Metrics 
Model 

Ali et al. [38] Proposed 

Accuracy 82.96 85.96 

Precision 87 86.47 

Recall 83 85.25 

F1-score 84 85.61 

Specificity - 78.43 

AUC - 0.8931 

 
These results confirm that combining feature fusion from Xception and InceptionV3 

and data augmentation significantly improves the model performance in Monkeypox classifi-
cation, making it more reliable than previous methods tested on the same dataset. 

6. Conclusions 

This study proposes a feature fusion-based deep learning model, combining Xception 
and InceptionV3 to improve the accuracy of Monkeypox skin lesion classification. With the 
application of data augmentation using Albumentation, the proposed model achieves an ac-
curacy of 85.96%, a precision of 86.47%, a recall of 85.25%, a specificity of 78.43%, and an 
AUC of 0.8931, showing improvements compared to previous methods on the Monkeypox 
Skin Lesion Dataset (MSLD). The main findings of this study confirm that feature fusion can 
produce richer feature representations, while data augmentation increases the model's sensi-
tivity to Monkeypox cases. The ablation study also proves that data augmentation significantly 
improves the model's generalization. 

Although the model has shown good performance, there is still room for further opti-
mization. Future studies can explore architecture fine-tuning strategies to improve the balance 
between recall and precision and evaluate additional feature selection methods to strengthen 
the extraction of skin lesion characteristics. In addition, using larger and more diverse da-
tasets, including images from various clinical sources, can help improve the robustness of the 
model in dealing with variations in real conditions. The results of this study contribute to the 
development of a more accurate and efficient deep learning-based medical image 
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classification method, and can be applied in a medical decision support system to assist early 
detection of Monkeypox, especially in areas with limited conventional diagnostic facilities. 
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