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Abstract: Health risk stratification is crucial for preventive healthcare, yet existing models often rely 

on binary classification generalized disease prediction, neglecting personalized health indicators and 

graded risk levels. Many studies apply feature selection techniques like Relief and Univariate Selection 

without quantifying the weighted impact of features. To address these gaps, this study introduces a Big 

Data-driven Health Index (HI) framework using PySpark for scalable health risk stratification. The HI 

is computed as a weighted sum of health-related features using SHAP Analysis, XGBoost, Random 

Forest, and Correlation Analysis. PySpark enables efficient processing of large-scale health data, and 

individuals are classified into Low and High Risk. Optimal classification thresholds are determined 

using the Youden Index from the ROC curve to balance sensitivity and specificity. Personalized health 

recommendations are generated based on risk categories to guide preventive interventions. Perfor-

mance evaluation reveals that Correlation Analysis achieves 100% precision and 98.90% recall, outper-

forming other methods. SHAP prioritizes recall but has low precision, while XGBoost and Random 

Forest improve precision but struggle with recall. By leveraging Big Data techniques with PySpark, this 

study enhances computational efficiency, scalability, and classification accuracy, addressing prior re-

search limitations and providing a robust data-driven approach to personalized health monitoring. 

Keywords: Big Data Analytics; Feature Importance; Health Index; Heart Disease Risk; PySpark; Risk 

Stratification. 

 

1. Introduction 

Information that cannot be processed or stored using conventional methods is called 
Big Data[1]. However, traditional systems can no longer accommodate the immense scale of 
data being generated, necessitating a more advanced framework comprising multiple compo-
nents that perform specialized tasks. Big Data has five key attributes: volume, variety, velocity, 
value, and veracity [2]. The rapid technological advancement in applicative areas such as the 
IoT, cloud computing, and edge computing combined with extensive use by society has re-
sulted in massive overflows of data generated every fraction of a second globally [3].  

In the health sector, this explosion of data is particularly significant, as it includes patient 
records, diagnostic imaging, genetic information, wearable health device data, and real-time 
monitoring from IoT devices. Big data in healthcare and medicine consists of large and com-
plex datasets[4], including the heart disease dataset analyzed in this research. Medical data's 
vast volume and complexity hinder effective analysis and restrict its practical application in 
clinical settings[5]. Health data sources have evolved to include computerized physician order 
entries, electronic medical records (EMRs), clinical notes, medical images, cyber-physical sys-
tems, the medical Internet of Things (IoT), genomic data, and clinical decision support sys-
tems. Traditional EMR-based software and hospital informatics systems are insufficient for 
efficiently managing and analyzing healthcare datasets[6]. However, this data's size, unstruc-
tured nature, and abstract form present challenges for healthcare organizations in collecting, 
analyzing, and interpreting it effectively[7]. Overcoming these challenges can enable 

Received: February, 5th 2025 

Revised: March, 17th 2025 

Accepted: March, 19th 2025 

Published: March, 24th 2025 

 

 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) licenses  

(https://creativecommons.org/licen

ses/by/4.0/)  

 

https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
mailto:segunabioye@nda.edu.ng
mailto:mirhebhude@nda.edu.ng
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Abioye and Irhebhude. 457 
 

 

healthcare professionals to make timely, data-driven decisions, predict disease outbreaks, en-
hance treatment personalization, and improve overall health outcomes.  

Evaluating big data requires the use of appropriate analytical tools[8]. The growing need 
to manage the ever-increasing volume of data has driven significant interest in developing 
effective big data frameworks [9]. Extensive research has explored various aspects of big data, 
including infrastructure[10], management [11], data searching [12], mining [13], and security 
[14]. Big data infrastructures have been designed to support analytics with fast, reliable, and 
adaptable computational architectures, offering efficient quality attributes such as flexibility, 
accessibility, resource pooling, and ease of use on-demand[15]. The importance of an effective 
big data analysis framework becomes evident when processing algorithms on extensive da-
tasets [16]. While local systems typically rely on a single central processing unit (CPU), the 
increasing size of datasets has led to the growing adoption of multi-core graphics processing 
units (GPUs) to boost performance. Although parallel processing can be efficiently imple-
mented due to distributed architectures, GPUs are often cost-prohibitive or unavailable. 
Therefore, there is a persistent demand for tools that leverage accessible CPUs in a distributed 
manner within local systems[17]. 

PySpark is Python's interface to the programming interface of Apache Spark, an open-
source distributed computing system intended for processing and analyzing big data [18]. It 
allows developers to scale and speed their application with Python's simplicity and library eco-
system [19]. Some of its major components include SparkContext, which is the entry into 
Spark functionality by coordinating an operation across the cluster; Resilient Distributed Da-
taset (RDD), a fault-tolerant, distributed data structure; and DataFrames and SQL, which 
provides a much-used Application Programming Interface (API) for structured records pro-
cess and query [20]. One major benefit PySpark offers is its capacity to run processes in 
memory, which promises high performance while processing large-scale datasets [21]. Despite 
some advantages, some disadvantages include learning to configure clusters and debugging 
distributed applications. While many such strengths and challenges for PySpark make it ap-
pealing, it is quite possible to say that PySpark fits in well with most modern big data projects, 
ranging from different choices[22]. 

This paper proposes personal health indicators to compute health index (HI), categorize 
individuals into risk levels, and generate personalized health recommendations using a big 
data health-related dataset of 319,797 instances and 18 features. A set of calculated weights is 
assigned to features, indicating their contribution to health or associated risks. Using these 
weights, a HI is computed for each individual by summing the weighted values of the features. 
Based on the HI, individuals are categorized into Low and High Risk levels. The categoriza-
tion uses conditional logic, with thresholds set for the index values. 

Using a HI with static thresholds instead of a Machine Learning (ML)-based classifier 
offers several advantages, particularly in system monitoring, predictive maintenance, and 
health assessment. It ensures simplicity and transparency, as fixed thresholds provide clear 
decision-making criteria without the complexity of ML models, which often function as black 
boxes[23]. This transparency enhances trust and ease of interpretation, making it valuable in 
fields requiring explainability [24]. Additionally, consistency and predictability are key bene-
fits, as HI-based methods maintain stable decision boundaries, unlike ML classifiers that may 
shift based on training data variations [25]. Another advantage is independence from training 
data, reducing the risk of performance degradation due to incomplete or biased datasets[26]. 
They also reduce the risk of overfitting, as they rely on predefined rules rather than data-
driven generalizations, ensuring robustness across diverse scenarios[27]. However, a key 
trade-off is that static thresholds assume universal, predefined limits, which may not capture 
nuanced or evolving patterns as effectively as adaptive ML models[25]. Ultimately, HI-based 
methods are most effective when explainability, reliability, and efficiency precede adaptability, 
particularly in critical systems like industrial equipment and medical devices [28]. 

The structure of this research paper is as follows: Section 2 reviews previous studies and 
key concepts in big data analytics, particularly in the context of PySpark, feature importance 
analysis, and machine learning applications for health risk assessment. Section 3 describes the 
proposed methodology, detailing data preprocessing, feature selection, health index compu-
tation, and classification techniques. Section 4 presents the experimental setup and results, 
including dataset description, correlation analysis, classification performance comparison, and 
personalized health recommendations. Section 5 discusses the key findings, emphasizing the 
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significance of the proposed framework, analyzing its implications, and outlining directions 
for future research. 

2. Related Work 

Several studies have explored machine learning-based approaches for heart disease pre-
diction and risk assessment, often leveraging big data analytics. Study [29] developed a real-
time heart disease prediction system that integrates Apache Spark for streaming big data pro-
cessing and MLlib for classification, achieving 87.50% accuracy. The model demonstrated 
effective real-time monitoring using Spark Streaming and Apache Cassandra for scalable data 
handling. Similarly, [30] proposed an ECG classification system using Spark-Scala and MLlib, 
achieving high accuracy (96.75% with GDB and 97.98% with Random Forest). However, 
both studies focus on binary classification without incorporating personalized health indica-
tors. 

Research [31] introduced a real-time arrhythmia detection pipeline using Apache Spark’s 
Structured Streaming module, demonstrating an accuracy of 88.7% with a Random Forest 
classifier. The study highlights the efficiency of Spark-based frameworks for real-time cardiac 
monitoring but does not quantify the impact of specific health features on classification out-
comes. Study [32] developed Sehaa, a healthcare analytics tool using Apache Spark and Twit-
ter data, employing Naïve Bayes and Logistic Regression for classifying health-related tweets. 
Although it provides insights into public health trends, it lacks an individualized risk assess-
ment approach. 

Several studies have also explored feature selection techniques for heart disease predic-
tion. For example, research [33] utilized Univariate Feature Selection and Relief to select rel-
evant features before training models such as Decision Tree, SVM, and Random Forest, 
achieving a maximum accuracy of 94.9%. Another study[34] proposed a real-time disease 
prediction system using streaming data from Twitter and Kafka, evaluating various ML mod-
els, with Random Forest achieving the highest classification accuracy (92.05%). However, 
these studies focus on disease classification without implementing a comprehensive health 
risk stratification framework. 

Further, deep learning methods have been employed in cardiac diagnosis. Research [6] 
applied transfer learning on Apache Spark for ECG image classification, utilizing InceptionV3 
and Logistic Regression. Although this approach enhances classification performance, it does 
not provide interpretability or feature weighting insights. Studies [35] and [36] explored big 
data-driven cardiovascular disease prediction, integrating feature fusion and hybrid deep 
learning models. However, these studies lack a unified health assessment and risk stratification 
index. 

Integrating HI and PySpark presents a notable advancement over prior methods in 
healthcare analytics. While previous studies primarily focus on disease classification or real-
time monitoring, they often lack personalized health assessment and interpretable insights. 
The HI addresses this gap by providing individualized risk evaluations through a weighted 
summation of selected features. Concurrently, PySpark facilitates scalable and real-time data 
processing, enabling healthcare systems to monitor and assess thousands of individuals sim-
ultaneously [37]. Its dynamic data handling capabilities allow for continuous updates to the 
HI, supporting timely risk stratification and targeted interventions[38]. Moreover, the combi-
nation of interpretable feature weighting and big data processing ensures that healthcare pro-
viders obtain clear, actionable insights, ultimately enhancing clinical decision-making and im-
proving patient outcomes[39]. 

Despite advancements in real-time disease prediction and feature selection methods, ex-
isting studies exhibit gaps in personalized health risk assessment, graded risk stratification, 
and feature impact quantification. The proposed study introduces a HI-based framework that 
categorizes individuals into low-risk and high-risk groups, leveraging feature weighting tech-
niques such as Correlation Analysis, SHAP, XGBoost, and Random Forest. Unlike previous 
methods, this approach ensures interpretability and scalability using PySpark, facilitating effi-
cient big data processing for health risk stratification (see Table 1). 

Table 1 compares previous methods with the proposed HI + PySpark framework, high-
lighting its advantages in personalization, risk stratification, scalability, interpretability, and 
integration. While previous studies rely on black-box ML models and separate data processing 
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tools, the proposed approach offers an end-to-end workflow using PySpark, enabling a trans-
parent, scalable, and data-driven health monitoring system. 

Table 1. Depicts the Comparison with the Previous Method and the Proposed Method. 

Aspects Previous Methods Health Index + PySpark (Ours) 

Personalization Limited to binary or disease-specific pre-
dictions. 

Holistic assessment using multiple health 
indicators. 

Risk Stratification Often absent or limited. Classifies individuals into Low, Moder-
ate, High-risk levels. 

Scalability Struggles with large-scale data. Efficiently processes big data using dis-
tributed computing. 

Interpretability Black-box models with limited transpar-
ency. 

Transparent weighted feature summa-
tion. 

Integration Separate tools for data processing and 
Machine Learning. 

End-to-end workflows with PySpark and 
MLlib. 

3. Proposed Method 

This section provides an overview of the experimental setup employed to develop the 
proposed models effectively. Certain important terminologies are explained in this section for 
optimal understanding. Figure 1 shows an overview of the proposed method. 

 

Figure 1. Methodology for Assessing Health Risk and Generating Personalized Health Recommendations 

3.1. PySpark Data Processing 

The PySpark framework is the Python API for Apache Spark, an open-source distrib-
uted computing system designed for large-scale data processing. It enables Python developers 
to harness the full power of Apache Spark for big data processing, real-time analytics, and 
machine learning while benefiting from Spark's speed and scalability. PySpark supports in-
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memory computing, which significantly improves performance by processing data in RAM 
rather than relying on traditional disk-based systems [21]. The framework provides high-level 
APIs for batch and stream processing, Resilient Distributed Datasets (RDDs), and data 
frames for efficient distributed data handling. PySpark also integrates with MLlib, Spark’s 
machine learning library, offering various classification, regression, and clustering algorithms 
while supporting real-time data processing via Structured Streaming [40]. PySpark's ability to 
integrate with other big data technologies such as Hadoop, Hive, and Kafka makes it suitable 
for various applications, including data transformation, ETL processes, and large-scale ma-
chine learning. Its flexibility allows deployment across various cluster managers, including 
YARN, Mesos, and Kubernetes, providing ease of use on multiple platforms [41]. This makes 
PySpark ideal for distributed data processing, machine learning, and real-time analytics[21]. 
The following sections describe how PySpark’s DataFrames, parallel processing, caching, and 
ML libraries are applied in the study. 

3.1.1. Use of DataFrames 

PySpark’s DataFrame API enables efficient, structured data handling by supporting 
SQL-like operations such as filtering, aggregation, and transformation[42]. This study loads 
the dataset as a data frame, ensuring optimized query execution and scalability. This structured 
approach allows seamless integration with PySpark’s MLlib, facilitating feature engineering, 
model training, and evaluation. 

3.1.2. Parallel Processing with RDDs 

PySpark distributes computations across multiple nodes using Resilient Distributed Da-
tasets (RDDs), which enable parallel execution of transformations such as filtering and feature 
selection [43]. This distributed computing framework significantly improves the performance 
of large-scale healthcare data processing. 

3.1.3. Feature Engineering & Caching 

To enhance computational efficiency, Vector Assembler is used to construct feature 
vectors, consolidating multiple attributes into a single feature representation. Additionally, 
intermediate DataFrames are cached to avoid redundant computations, improving processing 
speed and scalability [44]. 

3.1.4. Handling Missing Values Efficiently 

Missing data is handled using mean imputation for numerical attributes and model-based 
imputation for categorical attributes. PySpark processes these operations in parallel, allowing 
efficient large-scale data handling [45]. This ensures data integrity while reducing computa-
tional overhead. 

3.1.5. Machine Learning with PySpark 

PySpark’s MLlib library supports scalable machine learning algorithms. In this study, the 
RandomForestClassifier is utilized to analyze the importance of features and perform classi-
fication tasks efficiently [44]. This approach leverages PySpark’s distributed computing capa-
bilities to manage large datasets effectively. 

3.1.6. Correlation Analysis for Feature Selection 

Feature correlation is computed using PySpark’s Correlation module, enabling efficient 
feature selection [46]. This step identifies the most significant predictors for health risk strat-
ification, improving model interpretability and overall predictive performance. This study also 
compared several other feature importance analysis calculations, such as SHAP, XGBoost, 
and Random Forest. 

3.2. Health Index Calculation 

The HI is proposed as a method for quantifying an individual’s health risk based on a 
weighted sum of selected health-related features. Each feature is assigned a weight that re-
flects its relative importance in predicting heart disease risk. The calculation follows the Equa-
tion (1). 

𝐻𝑒𝑎𝑙𝑡ℎ𝐼𝑛𝑑𝑒𝑥 = ∑(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑖) 

𝑛

𝑖=1

 (1) 
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Where 𝑛 represents the total number of features included in the model; 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖  is the ob-

served value of the 𝑖-th health-related attribute for an individual; 𝑊𝑒𝑖𝑔ℎ𝑡𝑖  denotes the assigned 
weight for each feature, representing its contribution to heart disease risk assessment. 

The feature weights are derived through a correlation-based weighting method, where 
each numerical feature’s correlation with the target variable (heart disease) is calculated. Pos-
itive and negative correlations are considered absolute, ensuring that the most influential fea-
tures are highly important regardless of direction. The absolute correlation values are summed 
to normalize the feature weights, and each feature’s individual correlation is divided by this 
total. This ensures that all feature weights sum to one, allowing for a proportional represen-
tation of each feature’s predictive power. Features with stronger correlations receive higher 
weights, indicating their more significant role in assessing health risk. 

This method enables a data-driven and interpretable approach to health risk stratifica-
tion, where features contributing positively to health are assigned positive weights, while risk 
factors receive negative weighting. The calculated HI is then used for risk classification, cate-
gorizing individuals into different health risk levels. The classification threshold is determined 
through statistical techniques, ensuring optimal separation between low-risk and high-risk 
groups. 

3.3. Point-Biserial Correlation 

The point-biserial correlation (𝑟𝑝𝑏) is equivalent to Pearson's product-moment correla-

tion in cases where one variable is dichotomous (binary), represented by values 0 and 1, and 
the other variable is metric (measured on an interval or ratio scale)[47]. The point-biserial 

correlation coefficient (𝑟𝑝𝑏) calculated using Equation (2). 

𝑟𝑝𝑏 =
𝑀1 − 𝑀0

𝑠
. √𝑝 . (1 − 𝑝) (2) 

Where 𝑀1 is mean of the continuous variable for the group coded as 1 in the binary variable;  

𝑀0: Mean of the continuous variable for the group coded as 0 in the binary variable; 𝑠: 

Standard deviation of the continuous variable; 𝑝: Proportion of the binary variable coded as 
1. 

The value of the point-biserial correlation coefficient ( 𝑟𝑝𝑏) ranges from -1 to 1, 

where 𝑟𝑝𝑏 = 1 indicates a perfect positive relationship, 𝑟𝑝𝑏= −1 indicates a perfect negative 

relationship, and 𝑟𝑝𝑏= 0 indicates no relationship. The sign of 𝑟𝑝𝑏 indicates the direction of 
the relationship: a positive value means that higher values of the continuous variable are as-
sociated with the group coded as 1 in the binary variable, while a negative value means that 
higher values of the continuous variable are associated with the group coded as 0[48]. This 
study uses the Point-biserial correlation coefficient to measure the strength and direction of 
the relationship between HI and the features with binary outcomes. 

3.4. Youden’s Index 

Receiver operating characteristics (ROC) curves are utilized in biomedical research to 
assess the ability of biomarkers to differentiate between individuals with and without a dis-

ease[49]. The Youden index (𝐽), defined as a function of sensitivity (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦(𝑐)) and 

specificity ( 𝑠𝑝𝑒𝑐𝑓𝑖𝑐𝑖𝑡𝑦(𝑐)), is widely used to assess overall diagnostic performance[50]. The 
index varies from 0 to 1, where values near 1 suggest the biomarker has high effectiveness, 

and values near 0 indicate minimal effectiveness. 𝐽 is determined by Equation (3). 

𝐽 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 {𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦(𝑐) +  𝑠𝑝𝑒𝑐𝑓𝑖𝑐𝑖𝑡𝑦(𝑐)  − 1} (3) 

Where 𝑐 is the cutoff for sensitivity and specificity. The Youden Index is used in this 
study to determine the optimal classification threshold for the HI, ensuring that the trade-off 
between sensitivity and specificity is optimized for accurate disease risk assessment. 

3.5. Evaluations 

The proposed HI framework undergoes a rigorous evaluation process to ensure its reli-
ability in health risk stratification. The methodology incorporates multiple performance met-
rics to assess the classification accuracy and robustness of the model. The evaluation follows 
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a structured approach, beginning with the Receiver Operating Characteristic (ROC) curve 
analysis, which is employed to determine the model’s ability to differentiate between low-risk 
and high-risk individuals. The optimal classification threshold is identified using Youden’s 
Index, ensuring a balanced trade-off between sensitivity and specificity. 

A confusion matrix is generated to validate the classification performance further, 
providing insight into the distribution of correctly and incorrectly classified instances across 
risk categories. The model's performance is quantified using key metrics such as accuracy, 
precision, recall, F1-score, and the Matthews Correlation Coefficient (MCC). These metrics 
offer a comprehensive evaluation, capturing both the correctness of predictions and the bal-
ance between false positives and false negatives. 

The SHI distribution is also analyzed to examine the overall spread of risk scores within 
the dataset. The distribution pattern is expected to reveal underlying clusters, indicating var-
ying degrees of health risk across individuals. By visualizing SHI scores, the methodology 
ensures that risk classification thresholds are optimally set, enabling effective differentiation 
between individuals requiring medical intervention and those maintaining stable health con-
ditions. 

3.6. Generating Insights and Recommendations 

Following risk classification, the HI framework is designed to generate meaningful in-
sights and personalized health recommendations. The insights derived from the model enable 
individuals to be assigned to distinct risk categories, guiding the development of personalized 
health interventions. The framework is structured to provide targeted recommendations 
based on the individual's classification, ensuring that high-risk individuals receive actionable 
guidance tailored to their specific health conditions. The recommendation system is designed 
to be adaptable, allowing for integration into healthcare decision-making processes where 
clinicians and healthcare professionals can leverage the HI to prioritize at-risk populations 
and formulate preventive health strategies. 

4. Results and Discussion 

4.1. Dataset 

The Key Indicators of Heart Disease dataset is based on the CDC's 2020 annual survey, 
which collected health-related data from over 300,000 adults. Heart disease remains a leading 
cause of death in the U.S. across various racial groups, including African Americans, Ameri-
can Indians, Alaska Natives, and whites. The dataset contains 319,795 instances and 18 fea-
tures, providing extensive health-related information for analyzing factors contributing to 
heart disease. The target variable, HeartDisease, is binary (Yes or No), indicating the presence 
of heart disease. Predictors include numerical variables like BMI (body mass index) and Sleep-
Time (hours of sleep per day) and categorical variables like Smoking, AlcoholDrinking, 
Stroke, Sex, AgeCategory, and Race. Health-related features such as PhysicalHealth (days with 
poor physical health), MentalHealth (days with poor mental health), and DiffWalking (diffi-
culty walking) are also included, along with pre-existing conditions like Diabetic, Asthma, 
KidneyDisease, and SkinCancer. PhysicalActivity and GenHealth reflect activity levels and 
self-rated general health. The large dataset is ideal for predictive modeling, exploring health 
patterns, and identifying key contributors to heart disease[51]. 

The Key Indicators of Heart Disease dataset was chosen for the study because it pro-
vides a large-scale, feature-rich foundation for predictive modeling and health risk assessment. 
The dataset is well-suited for big data processing using PySpark, enabling efficient handling 
of large volumes of health-related data.  Additionally, its origin from the CDC’s 2020 annual 
survey ensures data reliability and public health relevance, making it suitable for identifying 
high-risk populations and informing preventive healthcare strategies. While the dataset is rich 
in health-related features and public health relevance, a deeper exploration of biases, class 
imbalances, and self-reporting limitations is necessary to ensure accurate, ethical, and gener-
alizable insights. Conducting data distribution analysis, fairness assessments, and bias mitiga-
tion strategies will enhance the dataset’s utility for predictive modeling and healthcare deci-
sion-making. 
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4.2. Correlation and Feature Importance Analysis 

The section defines a set of feature importance values based on individual feature 
weights for various health-related factors, such as BMI, PhysicalHealth, MentalHealth, Smok-
ing, AlcoholDrinking, PhysicalActivity, and others. These weights are used to compute an 
individual’s HI by calculating a weighted sum of the valid features present in the dataset. The 
correlation of each feature with the target variable (HeartDisease) is computed, and these 
correlations are normalized to obtain feature weights. Additionally, SHAP analysis and feature 
importance using XGBOOST and Random Forest algorithm are employed to calculate fea-
ture weights, see Table 2. 

Table 2. Comparison of Feature Weight. 

Features Correlation SHAP XGBoost-F1 RF-FI 

BMI 0.0318 0.0225 0.2383 0.0314 

PhysicalHealth 0.1047 0.0671 0.0858 0.0516 

MentalHealth 0.0175 0.0031 0.0946 0.0172 

SleepTime 0.0051 0.0178 0.1039 0.0264 

Smoking 0.0661 0.1596 0.0266 0.0173 

AlcoholDrinking 0.0197 0.0129 0.0121 0.0028 

Stroke 0.1207 0.0773 0.0252 0.1523 

DiffWalking 0.1234 0.0939 0.0261 0.0986 

AgeCategory 0.0817 0.6925 0.1194 0.1441 

Diabetic 0.0765 0.6924 0.0419 0.0764 

PhysicalActivity 0.0613 0 0.0208 0.0062 

GenHealth 0.1029 0.3555 0.0661 0.239 

Asthma 0.0254 0.0327 0.0237 0.0057 

KidneyDisease 0.089 0.0433 0.0185 0.0519 

SkinCancer 0.0572 0.0417 0.0145 0.0126 

4.3. Comparison of Classification Results 

Different feature importance methods—SHAP Analysis, XGBoost, Random Forest, 
and Correlation Analysis—demonstrate varying results. The accuracy, precision, recall, and 
specificity levels prove how well each method distinguishes between the two risk categories. 
A comparison of classification results is presented in Table 3. 

Table 3. Comparison of predicting results based on varying Feature Weight. 

Metrics Correlation SHAP XGBoost-F1 RF-FI 

Accuracy 0.9774 0.7276 0.6586 0.6676 

Precision 1.0000 0.2132 0.1294 0.1466 

F1 Score 0.9940 0.3377 0.2067 0.2347 

Recall 0.9890 0.8116 0.5135 0.5886 

MCC 0.9890 0.3171 0.1101 0.1557 

Balanced Accuracy 0.9940 0.7656 0.5930 0.6318 

Specificity 1.0000 0.7197 0.6724 0.6750 

Optimal Threshold 1.0000 0.0825 2.1251 1.2181 

SHAP Analysis prioritizes high recall (81.16%), ensuring most high-risk individuals are 
identified. However, its low precision (21.32%) suggests a high number of false positives, 
meaning many low-risk individuals may be misclassified as high-risk. The low optimal thresh-
old (0.0825) indicates that even minor deviations in health indicators can push individuals 
toward a higher risk category, making SHAP a highly sensitive but less specific approach. 
XGBoost, on the other hand, has moderate recall (51.35%) and low precision (12.94%), 
meaning it is more conservative in assigning individuals to the high-risk category but may fail 
to identify some truly high-risk cases. Its higher threshold (2.1251) suggests stricter 
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classification criteria, reducing false positives but potentially misclassifying some high-risk in-
dividuals as low-risk. Random Forest performs slightly better than XGBoost, with a recall of 
58.86% and precision of 14.66%, meaning it improves high-risk detection but still struggles 
to separate high-risk from low-risk individuals. Correlation Analysis, however, achieves per-
fect precision (100%) and very high recall (98.90%), ensuring that all individuals classified as 
high risk truly belong in that category. The optimal threshold (1.0000) establishes a strict 
decision boundary, ensuring clear separation between risk levels. Among the evaluated meth-
ods, Correlation Analysis outperforms all others in classifying individuals into low-risk and 
high-risk categories. With a high accuracy (97.74%), perfect precision (100%), high recall 
(98.90%), and optimal balanced accuracy (99.40%), it ensures that high-risk individuals are 
correctly identified while minimizing false positives.  

Unlike SHAP, XGBoost, and Random Forest, which struggle with either low precision 
or recall, Correlation Analysis provides a well-defined separation between risk categories, 
leading to more reliable health assessments. Its superior performance in both sensitivity and 
specificity makes it the most effective method for accurate health risk classification. This 
demonstrates that a correlation-based approach is highly suitable for optimizing health pre-
dictions and ensuring precise, data-driven recommendations for personalized health interven-
tions 

4.4. Point-Biserial Correlation Between Health Index and Features 

Understanding the relationship between health outcomes and various lifestyle or demo-
graphic factors is crucial for identifying potential risk factors and informing public health 
strategies. In this analysis, we explore the Point-Biserial Correlation between the HI and spe-
cific features to quantify the strength and significance of their association. Table 4 shows the 
Point-Biserial Correlation Between HI and the Features within the heart disease dataset used. 

Table 4. Depicts the Explanation of the Feature Weights of the Heart Disease Dataset 

Features Point-Biserial Correlation 

BMI 0.3050 

Smoking 0.1376 

AlcoholDrinking -0.0034 

Stroke 0.1488 

DiffWalking 0.4512 

AgeCategory 0.1977 

Diabetic 0.1592 

PhysicalActivity 0.2735 

GenHealth 0.4962 

Asthma 0.1613 

KidneyDisease 0.1539 

SkinCancer 0.0055 

HeartDisease 0.1582 

MentalHealth 0.4368 

PhysicalHealth 0.9127 

 
The key observations are based on Table 4 are  

1. Strong Positive Correlations: 

• PhysicalHealth (0.9127): This feature has the strongest positive correlation with the 
HI, indicating that better physical health is highly associated with a higher HI. 

• GenHealth (0.4962) and MentalHealth (0.4368): These also show strong positive re-
lationships, suggesting that general and mental health significantly contribute to the 
overall HI. 

• DiffWalking (0.4512): Difficulty walking is moderately associated with the HI, likely 
indicating that mobility issues negatively impact health. 
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2. Moderate Positive Correlations: 

• BMI (0.3050) and PhysicalActivity (0.2735): These features show moderate positive 
relationships, implying that higher BMI and physical activity levels are associated with 
better health outcomes. 

• Asthma (0.1613), KidneyDisease (0.1539), Stroke (0.1488), Diabetic (0.1592) and 
Smoking (0.1376): These conditions or behaviors have weaker but still notable posi-
tive correlations with the HI. 

3. Weak or Negligible Correlations: 

• AlcoholDrinking (-0.0034): The negative value suggests a very weak inverse relation-
ship, meaning alcohol consumption has almost no impact on the HI in this dataset. 

• SkinCancer (0.0055): This feature show almost no correlation with the HI, indicating 
that it has little to no influence on health outcomes in this context. 

4. AgeCategory (0.1217): has a weak positive correlation, suggesting that older age groups 
may have slightly higher HI scores, though the relationship is not strong. 

4.5. Personalized Health Recommendation 

The result for assessing health risk and generating personalized health recommendations 
for the first ten records is shown in Table 5. The analysis aims to assess individual health risks 
and provide tailored recommendations by leveraging a dataset of personal health indicators. 
Using a combination of feature engineering, clustering techniques, and domain-specific 
weighting, the approach integrates multiple health-related factors, such as physical activity, 
mental health, chronic conditions, and lifestyle habits, into a single composite score called the 
HI. This index is designed to quantify overall health status, reflecting both positive and neg-
ative contributors. By categorizing individuals into risk groups through clustering, the analysis 
enables precise identification of those requiring lifestyle improvements or medical attention. 
The framework assesses health risks and offers actionable recommendations based on spe-
cific health behaviors and conditions. This structured methodology highlights the value of 
personalized, data-driven health risk evaluation and management approaches. 

Table 5. Depicts Health Index-Based Risk Classification and Personalized Recommendations for 
Ten (10) records Using Correlation Analysis 

No Health Index Risk Category Personalized Recommendations 

1 0.7324576311664053 Low Risk  Focus on improving physical health and managing 
stress. Incorporate regular physical exercise. 

2 1.5017572619568902 High Risk Seek professional medical advice and prioritize 
health improvement 

3 5.270173077120121 High risk Focus on improving physical health and man-
aging stress. Incorporate regular physical exer-

cise. 

4 0.9466198197373792 Low Risk Focus on improving physical health and managing 
stress. Incorporate regular physical exercise. 

5 5.284683873891222 High Risk Seek professional medical advice and prioritize 
health improvement. 

6 1.065278147701063 High Risk Seek professional medical advice and prioritize 
health improvement. 

7 1.1229198466771444 High Risk Seek professional medical advice and prioritize 
health improvement. 

8 1.3728420189770663 High Risk Seek professional medical advice and prioritize 
health improvement. 

9 2.899728390139356 High Risk Focus on improving physical health and managing 
stress. Incorporate regular physical exercise. 

10 0.9695813185825066 Low Risk Focus on improving physical health and managing 
stress. Incorporate regular physical exercise. 

4.6. ROC and SHI Analysis 
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This section presents the evaluation ROC curve analysis, confusion matrix, and the dis-
tribution of SHI based optimal threshold selection using correlation feature weighting. These 
results provide insights into how well the model distinguishes between risk categories and the 
overall distribution of health risk scores. Figure 2 illustrates the ROC curve of the classifica-
tion model using correlation-based feature weighting. The Area Under the Curve (AUC) = 
0.994, indicating excellent discriminatory ability. The optimal threshold for classification is 
1.000, as marked in red, which ensures an effective balance between sensitivity and specificity. 

 

Figure 2. The Receiver Operating Characteristic (ROC) Curve with Optimal Threshold Selection 
Using Correlation Feature Weighting 

Figure 3 displays the confusion matrix for the risk stratification model. The model cor-
rectly classifies 32,448 low-risk individuals with no false positives and correctly identifies 
31,168 high-risk individuals. However, 355 high-risk cases were misclassified as low-risk, rep-
resenting a small false-negative rate. This high classification accuracy further supports the 
effectiveness of correlation-based feature weighting in stratifying health risks. 

 

Figure 3. The Confusion Matrix for Risk Stratification Model Using Correlation Feature Weighting 
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Figure 4 presents the distribution of SHI scores among individuals in the dataset. The 
histogram follows a right-skewed distribution, with most individuals having SHI values be-
tween 1 and 2, indicating lower health risks. A secondary peak around SHI values between 4 
and 5 suggests the presence of a distinct subgroup with higher health risks. The Kernel Den-
sity Estimation (KDE) curve highlights these trends, emphasizing that while most individuals 
have lower risk, a subset exhibits substantially higher SHI values, potentially linked to multiple 
chronic conditions or other risk factors. This analysis confirms that the HI effectively cap-
tures variations in health risk, allowing accurate classification and targeted health recommen-
dations. 

 

 

Figure 4. The Distribution of Summarized Health Index (SHI) Indicating Health Risk Variability 

5. Conclusions 

The proposed framework introduces a data-driven approach to health risk assessment 
and personalized recommendation generation, leveraging a combination of health indicators, 
clustering techniques, and domain-specific weighting. By computing HI that quantifies overall 
health status, the methodology effectively stratifies individuals into different risk categories 
and provides tailored recommendations to guide health management strategies. 

The HI enables a personalized risk assessment, integrating multiple health-related factors 
to identify individuals requiring medical intervention or lifestyle modifications. Through data-
driven decision-making, the approach facilitates targeted recommendations that enhance the 
precision of health interventions, ensuring that preventive measures and treatments are tai-
lored to individual needs. Additionally, the methodology supports continuous health moni-
toring, allowing for longitudinal tracking of health trends and enabling adaptive risk manage-
ment. 

Beyond its application at the individual level, this framework has broader implications 
for healthcare optimization, offering a scalable solution for integrating machine learning into 
clinical decision support systems. Improving risk stratification and resource allocation con-
tributes to more efficient healthcare delivery, minimizing unnecessary interventions while pri-
oritizing high-risk individuals. This underscores the potential of Big Data analytics in shaping 
future healthcare strategies, bridging the gap between predictive modeling and actionable 
health insights. 

 

Author Contributions: Conceptualization: O.A.A. and M.E.I.; methodology, O.A.A.; soft-
ware: O.A.A.; validation: O.A.A., and M.E.I.; formal analysis: O.A.A.; investigation: M.E.I; 
resources: O.A.A.; writ-ing—original draft preparation: O.A.A.; writing—review and editing: 
M.E.I.; visualization: O.A.A; supervision: M.E.I; project administration: O.A.A. All authors 
have read and agreed to the published version of the manuscript.  



Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Abioye and Irhebhude. 468 
 

 

Funding: This research received no external funding. 

Data Availability Statement: The data used in this research is a well-known heart disease 
dataset available on the Kaggle platform at https://www.kaggle.com/datasets/ka-
milpytlak/personal-key-indicators-of-heart-disease. 

Conflicts of Interest: The authors declare no conflict of interest 

References 

[1] R. Naqvi, T. R. Soomro, H. M. Alzoubi, T. M. Ghazal, and M. T. Alshurideh, “The Nexus Between Big Data and Decision-Making: 
A Study of Big Data Techniques and Technologies,” in Proceedings of the International Conference on Artificial Intelligence and Computer 
Vision (AICV2021), Springer, Cham, 2021, pp. 838–853. doi: 10.1007/978-3-030-76346-6_73. 

[2] C. Nyamful and R. Agrawal, “Big Variety Data,” in Encyclopedia of Big Data, Cham: Springer International Publishing, 2022, pp. 110–
113. doi: 10.1007/978-3-319-32010-6_23. 

[3] A. T. Atieh, “The Next Generation Cloud technologies: A Review On Distributed Cloud, Fog And Edge Computing and Their 
Opportunities and Challenges,” Res. Rev. Sci. Technol., vol. 1, no. 1, pp. 1–15, 2021, [Online]. Available: 
https://researchberg.com/index.php/rrst/article/view/18 

[4] S. Nazir et al., “A Comprehensive Analysis of Healthcare Big Data Management, Analytics and Scientific Programming,” IEEE 
Access, vol. 8, pp. 95714–95733, 2020, doi: 10.1109/ACCESS.2020.2995572. 

[5] S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare: management, analysis and future prospects,” J. Big 
Data, vol. 6, no. 1, p. 54, Dec. 2019, doi: 10.1186/s40537-019-0217-0. 

[6] Z. M. Tun and M. Aye Khine, “Cardiac Diagnosis Classification Using Deep Learning Pipeline on Apache Spark,” in 2020 17th 
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Jun. 2020, 
pp. 743–746. doi: 10.1109/ECTI-CON49241.2020.9158314. 

[7] K. Batko and A. Ślęzak, “The use of Big Data Analytics in healthcare,” J. Big Data, vol. 9, no. 1, p. 3, Dec. 2022, doi: 10.1186/s40537-
021-00553-4. 

[8] P. Kangelani and T. Iyamu, “A Model for Evaluating Big Data Analytics Tools for Organisation Purposes,” in Responsible Design, 
Implementation, and Use of ICT (Information and Communication Technology), 2020. 

[9] D. Otoo-Arthur and T. L. van Zyl, “A Scalable Heterogeneous Big Data Framework for e-Learning Systems,” in 2020 International 
Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Aug. 2020, pp. 1–15. doi: 
10.1109/icABCD49160.2020.9183863. 

[10] R. Venkatraman and S. Venkatraman, “Big Data Infrastructure, Data Visualisation and Challenges,” in Proceedings of the 3rd 
International Conference on Big Data and Internet of Things, Aug. 2019, pp. 13–17. doi: 10.1145/3361758.3361768. 

[11] R. Rossi and K. Hirama, “Characterizing Big Data Management,” Issues Informing Sci. Inf. Technol., vol. 12, pp. 165–180, 2015, doi: 
10.28945/2204. 

[12] S. Acharjee and R. Choudhury, “Big data searching using words,” arXiv. Sep. 10, 2024. [Online]. Available: 
http://arxiv.org/abs/2409.15346 

[13] J. Yang et al., “Brief introduction of medical database and data mining technology in big data era,” J. Evid. Based. Med., vol. 13, no. 
1, pp. 57–69, Feb. 2020, doi: 10.1111/jebm.12373. 

[14] S. Venkatraman and R. Venkatraman, “Big data security challenges and strategies,” AIMS Math., vol. 4, no. 3, pp. 860–879, 2019, 
doi: 10.3934/math.2019.3.860. 

[15] S. Usman, R. Mehmood, I. Katib, and A. Albeshri, “Data Locality in High Performance Computing, Big Data, and Converged 
Systems: An Analysis of the Cutting Edge and a Future System Architecture,” Electronics, vol. 12, no. 1, p. 53, Dec. 2022, doi: 
10.3390/electronics12010053. 

[16] S. Dasari and R. Kaluri, “Big Data Analytics, Processing Models, Taxonomy of Tools, V’s, and Challenges: State-of-Art Review and 
Future Implications,” Wirel. Commun. Mob. Comput., vol. 2023, pp. 1–14, May 2023, doi: 10.1155/2023/3976302. 

[17] A. Shanbhag, S. Madden, and X. Yu, “A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database 
Analytics,” in Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Jun. 2020, pp. 1617–1632. doi: 
10.1145/3318464.3380595. 

[18] E. Shaikh, I. Mohiuddin, Y. Alufaisan, and I. Nahvi, “Apache Spark: A Big Data Processing Engine,” in 2019 2nd IEEE Middle East 
and North Africa COMMunications Conference (MENACOMM), Nov. 2019, pp. 1–6. doi: 10.1109/MENACOMM46666.2019.8988541. 

[19] M. Saxena, S. Jha, S. Khan, J. Rodgers, P. Lindner, and E. Gabriel, “Comparison of MPI and Spark for Data Science Applications,” 
in 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2020, pp. 682–690. doi: 
10.1109/IPDPSW50202.2020.00123. 

[20] M. Alam Mallik, N. Fariza Zulkurnain, S. Siddiqui, and R. Sarkar, “The Parallel Fuzzy C-Median Clustering Algorithm Using Spark 
for the Big Data,” IEEE Access, vol. 12, pp. 151785–151804, 2024, doi: 10.1109/ACCESS.2024.3463712. 

[21] S. Tang, B. He, C. Yu, Y. Li, and K. Li, “A Survey on Spark Ecosystem: Big Data Processing Infrastructure, Machine Learning, and 
Applications,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 1–1, 2020, doi: 10.1109/TKDE.2020.2975652. 

[22] M. Gecer, “Debugging Spark Applications A Study on Debugging Techniques of Spark Developers Master Thesis,” Universit ̈at 
Bern, 2020. [Online]. Available: https://scg.unibe.ch/archive/masters/Gece20a.pdf 

[23] A. Ed-Daoudy and K. Maalmi, “Real-time machine learning for early detection of heart disease using big data approach,” in 2019 
International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Apr. 2019, pp. 1–5. doi: 
10.1109/WITS.2019.8723839. 

https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease


Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Abioye and Irhebhude. 469 
 

 

[24] F. I. Alarsan and M. Younes, “Analysis and classification of heart diseases using heartbeat features and machine learning algorithms,” 
J. Big Data, vol. 6, no. 1, p. 81, Dec. 2019, doi: 10.1186/s40537-019-0244-x. 

[25] S. Ilbeigipour, A. Albadvi, and E. Akhondzadeh Noughabi, “Real-Time Heart Arrhythmia Detection Using Apache Spark 
Structured Streaming,” J. Healthc. Eng., vol. 2021, pp. 1–13, Apr. 2021, doi: 10.1155/2021/6624829. 

[26] S. Alotaibi, R. Mehmood, I. Katib, O. Rana, and A. Albeshri, “Sehaa: A Big Data Analytics Tool for Healthcare Symptoms and 
Diseases Detection Using Twitter, Apache Spark, and Machine Learning,” Appl. Sci., vol. 10, no. 4, p. 1398, Feb. 2020, doi: 
10.3390/app10041398. 

[27] H. Ahmed, E. M. G. Younis, A. Hendawi, and A. A. Ali, “Heart disease identification from patients’ social posts, machine learning 
solution on Spark,” Futur. Gener. Comput. Syst., vol. 111, pp. 714–722, Oct. 2020, doi: 10.1016/j.future.2019.09.056. 

[28] A. Ed-daoudy, K. Maalmi, and A. El Ouaazizi, “A scalable and real-time system for disease prediction using big data processing,” 
Multimed. Tools Appl., vol. 82, no. 20, pp. 30405–30434, Aug. 2023, doi: 10.1007/s11042-023-14562-3. 

[29] P. Rajendra Kumar, P. Chakrabarti, T. Chakrabarti, B. Unhelkar, and M. Margala, “Heart disease prediction using spark architecture 
with fused feature set and hybrid Squeezenet-Linknet model,” Biomed. Signal Process. Control, vol. 100, p. 107070, Feb. 2025, doi: 
10.1016/j.bspc.2024.107070. 

[30] Y. K. Gupta and S. Kumari, “Performance Evaluation of Distributed Machine Learning for Cardiovascular Disease Prediction in 
Spark,” in 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Jun. 2021, pp. 1506–1512. doi: 
10.1109/ICOEI51242.2021.9452955. 

[31] Arif Ahmad Shehloo and Ganesh Gopal Varshney, “Realizing the Potential of Big Data Analytics through Apache Spark MLlib,” 
Nanotechnol. Perceptions, pp. 1813–1830, Nov. 2024, doi: 10.62441/nano-ntp.vi.3022. 

[32] S. Eeti, “Real-Time Data Processing: An Analysis of PySpark’s Capabilities,” Int. J. Res. Anal. Rev., vol. 8, no. 3, 2021, [Online]. 
Available: www.ijrar.org 

[33] E. Dorison, F. Lesur, D. Meurice, and G. Roinel, “Health index, a tool for asset management,” in International Conference on Power 
Insulated Cables, 2007. [Online]. Available: https://www.jicable.org/2007/Actes/Session_B4/JIC07_B41.pdf 

[34] D. Kornbrot, “Point Biserial Correlation,” in Wiley StatsRef: Statistics Reference Online, Wiley, 2014. doi: 
10.1002/9781118445112.stat06227. 

[35] J. D. Brown, “Point - biserial correlation coefficientsbiserial correlation coefficients,” Shiken: JLT Testing & Evlution SIG Newsletter. 
pp. 13–17, 2001. [Online]. Available: https://teval.jalt.org/test/PDF/Brown12.pdf 

[36] K. Pytlak, “Indicators of Heart Disease (2022 UPDATE).” 2022. [Online]. Available: 
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease/data 

[37] I. Malakar and B. Nepal, “Conceptualizing Explorative Data Analysis in Applied Statistics,” Patan Gyansagar, vol. 6, no. 1, pp. 46–
63, Jul. 2024, doi: 10.3126/pg.v6i1.67406. 

[38] M. Abt, T. Leuders, K. Loibl, and F. Reinhold, “Developing initial notions of variability when learning about box plots,” Math. 
Think. Learn., pp. 1–24, Oct. 2024, doi: 10.1080/10986065.2024.2421412. 

[39] R. L. Nuzzo, “The Box Plots Alternative for Visualizing Quantitative Data,” PM&R, vol. 8, no. 3, pp. 268–272, Mar. 2016, doi: 
10.1016/j.pmrj.2016.02.001. 

[40] J. H. Kwak, H. Bin Lee, and K.-H. Lee, “Exploring how to Organize a Unit on Box Plots Through Analysis of Foreign Textbooks,” 
Korean Soc. Educ. Stud. Math. - Sch. Math., vol. 25, no. 2, pp. 249–276, Jun. 2023, doi: 10.57090/sm.2023.06.25.2.249. 

[41] K. Hu, “Become Competent within One Day in Generating Boxplots and Violin Plots for a Novice without Prior R Experience,” 
Methods Protoc., vol. 3, no. 4, p. 64, Sep. 2020, doi: 10.3390/mps3040064. 

[42] E. Soltanmohammadi and N. Hikmet, “Optimizing Healthcare Big Data Processing with Containerized PySpark and Parallel 
Computing: A Study on ETL Pipeline Efficiency,” J. Data Anal. Inf. Process., vol. 12, no. 04, pp. 544–565, 2024, doi: 
10.4236/jdaip.2024.124029. 

[43] A. Senbato, “Designing Healthcare Data Analytics Framework Based on Big Data Approach: In Case of Stroke Disease Prediction,” 
Addis Ababa Science and Technology University, 2019. 

[44] K. Sharma et al., “Apache Spark for Analysis of Electronic Health Records: A Case Study of Diabetes Management,” Rev. d’Intelligence 
Artif., vol. 37, no. 6, pp. 1521–1526, Dec. 2023, doi: 10.18280/ria.370616. 

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. London, England: MIT Press, 2016. 
[46] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?,’” in Proceedings of the 22nd ACM SIGKDD International Conference 

on Knowledge Discovery and Data Mining, Aug. 2016, vol. 13-17-Augu, pp. 1135–1144. doi: 10.1145/2939672.2939778. 
[47] C. M. Bishop and N. M. Nasrabadi, “Pattern Recognition and Machine Learning,” J. Electron. Imaging, vol. 16, no. 4, p. 049901, Jan. 

2007, doi: 10.1117/1.2819119. 
[48] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, 2nd 

editio. Springer, 2017. 
[49] A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based 

maintenance,” Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483–1510, Oct. 2006, doi: 10.1016/j.ymssp.2005.09.012. 
[50] G. Niu, T. Han, B.-S. Yang, and A. C. C. Tan, “Multi-agent decision fusion for motor fault diagnosis,” Mech. Syst. Signal Process., vol. 

21, no. 3, pp. 1285–1299, Apr. 2007, doi: 10.1016/j.ymssp.2006.03.003. 

[51] M. J. Goddard and I. Hinberg, “Receiver operator characteristic (ROC) curves and non‐normal data: An empirical study,” Stat. 
Med., vol. 9, no. 3, pp. 325–337, Mar. 1990, doi: 10.1002/sim.4780090315. 

 


