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Abstract: Minimally invasive surgery offers several advantages, including reduced blood loss, smaller 

incisions, less pain, and a lower risk of complications than open surgery. This approach enhances pa-

tient comfort and supports faster recovery. When guided by optimal path planning, surgical robots can 

accurately navigate the body to remove malignant tumors with high precision. This study proposes a 

Modified Particle Swarm Optimization (MPSO) algorithm to determine the optimal path for robotic-

assisted minimally invasive surgery targeting brain tumors. The algorithm improves upon standard PSO 

by modifying the velocity update equation and incorporating an adaptive inertia weight, enhancing 

convergence speed, global search ability, and solution accuracy. Experimental results show that the 

proposed MPSO achieves a maximum fitness value of 19.10 in a sparse obstacle environment, outper-

forming standard PSO and IPSO in quality and the required number of iterations. The approach ef-

fectively balances path efficiency and obstacle avoidance, making it well-suited for complex surgical 

scenarios. In conclusion, the MPSO-based method provides a reliable and precise solution for robotic 

surgical navigation, improving outcomes and safety in minimally invasive procedures. 

Keywords: Intelligent Surgical Navigation; Modified Particle Swarm Optimization; Optimal Route; 

Particle Swarm Optimization; Robot Assisted Invasive Surgery. 

 

1. Introduction 

Cancer treatment poses significant challenges due to the aggressive and unpredictable 
spread of malignant cells. A critical factor in improving therapeutic outcomes lies in under-
standing how these cells migrate and in accurately localizing tumor regions. Advances in med-
ical imaging, particularly brain MRI segmentation, have enabled the precise identification of 
malignant tissues. However, removing these cells through minimally invasive procedures re-
mains complex, especially when performed within anatomically dense and sensitive regions 
such as the brain. Robot-Assisted Invasive Surgery (RAIS)[1] has emerged as a promising 
solution for enhancing surgical precision and patient recovery. By minimizing incision size, 
blood loss, and collateral tissue damage, RAIS allows for safer and more efficient tumor re-
section. A key requirement in RAIS is optimal path planning, which enables robotic instru-
ments to reach the target tumor site with minimal disruption to surrounding structures. This 
involves determining the shortest and safest route while avoiding obstacles like blood vessels 
and nerve tissues. 

To address this problem, we propose a novel approach using the Modified Particle 
Swarm Optimization (MPSO) algorithm. MPSO extends the standard PSO by introducing 
dynamic inertia weight and refined velocity update equations, allowing particles (candidate 
paths) to better explore and exploit the search space. These enhancements improve conver-
gence speed and prevent stagnation in local optima [2], [3]. 
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Compared to conventional algorithms such as A*, which may falter in dynamic or high-
dimensional surgical environments, and Genetic Algorithms (GA), which often require labo-
rious parameter tuning, MPSO offers a more adaptive and computationally efficient frame-
work. Its ability to navigate complex neural structures makes it highly suitable for surgical 
path optimization in RAIS. Moreover, learning-based optimization strategies similar to 
MPSO have demonstrated efficacy in autonomous navigation tasks [4]. Further supporting 
its relevance for robotic surgery. This study presents an intelligent route planning framework 
based on MPSO for application in RAIS targeting brain tumors. The proposed system is 
evaluated using segmented MRI images under varying obstacle densities, demonstrating its 
effectiveness in guiding robotic tools with improved accuracy, safety, and operational effi-
ciency. 

2. Literature Review 

Tan et al. [5] present an innovative path-planning approach for surgical needles, utilizing 
adaptive intelligent PSO with force and motion analysis of a bevel-tip flexible needle. The 
approach addresses challenges in percutaneous puncture therapy by navigating complex ob-
stacles, achieving a path planning error under 1mm and improving accuracy tenfold compared 
to current methods. Zhang et al. [6] explore preoperative planning for a multi-arm surgical 
robot, combining PSO with Gaussian Process (GP) techniques to optimize performance met-
rics like the Global Isotropy Index (GII), Cooperation Capability Index (CCI), and Manipu-
lability Dexterity Index (MDI). The strategy improves surgical robot performance by opti-
mizing port positions and arm placements, with future work planned to test the method on a 
four-arm system. Ramezanlou et al. [7] introduce a hybrid algorithm combining optimal con-
trol and PSO for robot path planning, addressing the weaknesses of individual methods. Ap-
plied to a four Degrees of Freedom (DOF) surgical robot system, the algorithm improves 
cost function independence and reduces reliance on initial guesses, making it more effective 
than traditional methods. Supakar et al. [8] propose a Modified PSO(MPSO) for robot navi-
gation in unknown environments, improving path planning efficiency and convergence com-
pared to standard PSO. The MPSO algorithm combines global and local search strategies to 
navigate obstacles and optimize paths in dynamic settings. Baek et al. [9] present a collision 
avoidance method for resection automation using PRM and RL, tested on the APOLLON 
laparoscopic robot system. Integrating Q-learning allows the system to adapt and optimize its 
path planning for tasks like resection and cholecystectomy. Bhattacharya et al. [10] focus on 
optimizing reader placement in RFID networks within a store using PSO, reducing deploy-
ment costs while maintaining read accuracy. The PSO-based algorithm adjusts particle veloc-
ity and position to find optimal placements, effectively minimizing costs. Malik and Kim [11] 
use PSO for optimal travel route recommendations, considering factors like user preferences 
and road conditions to enhance tourism experiences. The study uses data from Jeju Island to 
evaluate the method's effectiveness, comparing it to non-optimized techniques and genetic 
algorithms. Li et al. [12] introduce an Improved PSO (IPSO) algorithm for mobile robot path 
planning, addressing PSO's slow convergence. IPSO outperforms existing algorithms by 
combining cubic spline interpolation, exponential attenuation inertia weight, and enhanced 
control learning factors, reducing path length and processing time. Previous studies on PSO 
modifications highlight the need for IPSO's improvements in global path planning. Prabu et 
al. [13] apply PSO to optimize power consumption in Wireless Sensor Networks (WSN), 
focusing on residual energy to select the optimal controller node. The study emphasizes the 
importance of fitness functions in WSN optimization. Jakubcova et al. [14] compare 27 mod-
ifications of the original PSO algorithm, finding that a version with adaptive inertia weight 
and SCE PSO distribution strategy achieves the best optimization results for most functions. 
The study's shuffling mechanism prevents premature convergence. Jain et al. [15] call for 
continued research on PSO to address challenges like local optima and premature conver-
gence, proposing further exploration in applications and hybridization. "OkayPlan" intro-
duced by [16] is a global path-planning algorithm designed for dynamic environments. By 
formulating the path planning problem as an Obstacle Kinematics Augmented Optimization 
Problem (OKAOP), the authors employ a PSO-based optimizer to achieve real-time perfor-
mance, demonstrating enhanced path safety, optimality, and computational efficiency in dy-
namic scenarios. Mishra et al. [17] proposed a hybrid path-planning algorithm that combines 
PSO with Artificial Potential Fields (APF). The integration aims to overcome the individual 
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limitations of each method, resulting in superior path planning performance. The algorithm's 
efficacy is demonstrated through various 2D experimental scenarios. Xin et al. [18] introduce 
a Self-Evolving PSO (SEPSO) algorithm tailored for dynamic path planning. The algorithm 
achieves superior real-time performance and avoids premature convergence by converting 
particle-wise manipulations to tensor operations and implementing a Hierarchical Self-Evolv-
ing Framework (HSEF). Meanwhile, coordination strategies in multi-robot environments us-
ing smooth parametric trajectories such as NURBs have also been investigated [19]. Q. Yuan 
[20] proposes an improved PSO algorithm incorporating differential evolution for mobile 
robot path planning. The algorithm enhances convergence speed and search precision, effec-
tively optimizing path length and safety in various simulation tests. 

3. Proposed Method 

This study proposes an intelligent route planning approach using the MPSO algorithm 
to determine the optimal surgical path for RAIS. The method builds upon the standard PSO 
framework [21], where a swarm of particles—each representing a potential path—searches 
the solution space by iteratively updating positions based on personal and global best experi-
ences[22], [23]. In this context, the surgical environment is derived from segmented MRI 
images, where anatomical obstacles such as blood vessels and nerves are treated as high-cost 
or impassable regions. The proposed system evaluates three scenarios with increasing obstacle 
density: sparse, dense, and highly dense, simulating varying levels of anatomical complexity. 

The algorithm defines four strategic starting points around the tumor to initiate the pro-
cess. For each particle (representing the robotic arm and surgical tool path), MPSO dynami-
cally adjusts positions and velocities based on a fitness function that considers five factors: 
the Euclidean distance to the tumor, proximity to obstacles, energy efficiency, inertia weight, 
and a number of encountered obstacles[2], [3]. 

The update mechanism effectively balances exploration and exploitation [24], [25]. Paths 
that avoid collisions and minimize travel distance receive higher fitness values, while infeasible 
routes are penalized. Through iterative refinement, the algorithm converges toward an effi-
cient, safe, and feasible path for real-time robotic execution during RAIS. By integrating mul-
tiple starting points, the method increases robustness and avoids convergence to suboptimal 
paths. This design supports practical deployment in neurosurgical procedures, where flexibil-
ity and accuracy are critical. 

3.1. Implementation Considerations 

Several enhancements are introduced in the proposed MPSO framework to improve 
search efficiency and robustness in surgical path planning. These include: 

• Dynamic inertia weight adjustment, which governs the trade-off between global explo-
ration and local exploitation during each iteration; 

• Velocity update formulation that incorporates both cognitive and social learning com-
ponents; 

• The fitness function design, tailored for medical imaging contexts, evaluates path feasi-
bility based on anatomical constraints extracted from MRI segmentation. 
Each scenario, i.e., sparse, dense, and highly dense, is modeled with 5, 10, and 15 obsta-

cles, respectively. The algorithm iterates over these environments, adapting particle trajecto-
ries to avoid high-risk areas and identify the optimal route to the tumor site. The next sections 
detail the specific learning parameters, fitness function formulation, and algorithmic steps 
used in this implementation. 

3.2. Improved Learning Factor for the Proposed Model 

To support effective path planning in RAIS, several learning factors are introduced in 
the MPSO model to refine the behavior of each particle (i.e., candidate surgical path): 

• Distance between a starting point and malignant tumor cell: Initializes the coordinate of 
a starting point (the insertion points of the robotic arm) and brain tumor cell from a 
segmented MRI image. In this case, the distance is observed by applying the Euclidean 
distance formula. It should have the lowest possible value. 
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• Distance between current operating point and nearby obstacles: Initializes the positions 
of nearby obstacles randomly. We must choose a maximum distance from obstacles to 
the current operating point to avoid any possible obstacles. 

• The particle's energy (Surgical Instrument): In this paper, the particle's energy initializes 
to 0.5, which will change subsequently through iterations.  

• The number of obstacles: Inside the brain, blood vessels, nerves, etc., are considered 
obstacles. A minimum number of obstacles along the path results in an efficient route.  

• Inertia weight is one important parameter that balances the algorithm's local and global 
search capacity. 
These factors directly influence the particle’s movement and contribute to the overall 

fitness evaluation discussed below. 

3.3. Description of the Fitness Function 

 The fitness function is a crucial component of the PSO algorithm. It converts the par-
ticle values into real numbers, indicating how well a given particle solves the optimization 
problem. The function is designed to evaluate and "reward" particles that are closest to the 
ideal solution, guiding the search toward the optimal path. The fitness function's formulation 
depends on the optimisation problem's specific nature. In the context of this work, the max-
imum fitness value is considered, which should be as close as possible to the optimal solution. 
This ensures that the particles with the best performance are selected, leading the algorithm 
to the most efficient and feasible path for the robotic arm to reach the malignant tumor. The 
fitness function plays a key role in the overall success of PSO, balancing the search for an 
optimal solution with the need for safe and efficient navigation in a complex environment. 

The function (𝑓) is formulated as Equation (1). 

𝑓 = (
1

𝑑1
) + 𝑑2 + 𝑤 (

𝑒𝑝

𝑛
) (1) 

Where 𝑑1 is the distance between the starting point and the malignant tumor cell; 𝑑2 is the 
sum of the distance between the current operating point and nearby obstacles; 𝑤 is inertia 

weight; 𝑒𝑝 is the particle's energy; 𝑛 is the number of nearby obstacles. Maximum fitness 
value helps the particle to determine the best neighbouring node along the path to the tumor 
cell in the segmented MRI image. 

3.4. Proposed Route Planning Approach 

Optimal route planning, especially for navigating to a malignant brain tumor region while 
avoiding obstacles, involves a sophisticated blend of various parameters and scenarios. A piv-
otal component of this approach is the MPSO algorithm [24], which regulates its parameters 
such as inertia weight (𝑤), cognitive parameter (𝑐1) and social parameter (𝑐2) to navigate 
effectively through different environments. The MPSO algorithm is designed to operate in 
three distinct environments characterized by different obstacle densities: 
1. Sparse Environment: Contains 5 obstacles, offering fewer navigational challenges. 
2. Dense Environment: Includes 10 obstacles, increasing complexity. 
3. Highly Dense Environment: Features 15 obstacles, presenting the highest level of diffi-

culty for pathfinding. 
As obstacles increase in a highly dense environment, the fitness function's sensitivity to 

obstacle contiguity must be heightened. The planning algorithm iteratively adjusts the parti-
cles’ paths, continuously improving until the optimal path with maximum fitness value is 
found. Throughout this process, obstacle avoidance mechanisms such as potential fields or 
additional repulsion terms in the fitness function are critical. These mechanisms dynamically 
alter paths to circumvent obstacles efficiently. Therefore, the combined effect of finely tuned 
PSO parameters, an adaptive fitness function and robust obstacle avoidance strategies ensures 
the identification of an optimal and safe path to the malignant tumor in various environmental 
complexities. The environmental description and the execution of the proposed approaches 
are defined below. 

 
 
 



Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Dasgupta, et al. 502 
 

 

Step 1: Create a Simplified Environment from MRI images 

Apply a Deep Learning technique to segment brain images[26], identifying and extract-
ing coordinates for the entire image and the tumor region. Next, transform the segmented 
images into a simplified representation, clearly highlighting the tumor's location within the 
MRI image. Figure 1. represents both original and segmented MRI images for Brain Tumor. 

 

 
(a) 

 
(b) 

Figure 1. MRI image of the brain along with tumor cells. (a) Before segmentation; (b) After      
segmentation. 

Step 2: Initialize Point 

Select multiple random points (up to four) within the segmented image and near the 
detected tumor region to serve as starting points. Any point within the segmented tumor 
region will be considered the destination point. Randomly assign additional points between 
the starting and destination points as obstacles, representing areas such as blood vessels or 
nerves, based on the segmentation results. These obstacles indicate regions to avoid during 
further analysis or planning. 

Step 3: Apply MPSO Algorithm 

Apply the MPSO algorithm as stated in section 5 in three different environments – 
sparse (number of obstacles is set as 5), dense (number of obstacles is set as 10) and highly 
dense (number of obstacles is set as 15). In Figure 2, the path originating from the starting 
point at coordinates (66, 125) has been traced and observed. The path highlights the connec-
tion from the selected starting point to the designated destination, navigating around obsta-
cles identified in the segmented image. 

 

 
(a) 

 
(b) 

Figure 2. Route generated: (a) In a sparse environment; (b) In dense environments. 

Step 4: Identification of Optimal Route 

Once the algorithm converges, the optimal path for the surgical tool to reach the malig-
nant tumor is determined by analyzing the final position of the particle within the solution 
space. This path ensures minimal interference with obstacles, such as blood vessels or nerves, 
while providing an efficient and precise approach to the tumor. 

Step 5: Execution in Robotic Surgery 

The suggested ideal route can be implemented by the Robotic Surgical System during 
minimally invasive treatment, allowing for precise navigation to the tumor site. This approach 
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minimizes damage to the surrounding healthy tissues, enhancing the accuracy and safety of 
the procedure. Figure 3 describes the optimal route planning using the MPSO algorithm. 

 

Figure 3. Flowchart of optimal route planning using MPSO. 

The step-by-step computational implementation of this proposed approach is outlined in Al-
gorithm 1. 

 

Algorithm 1. Optimal route planning using MPSO 
INPUT: Segmented MRI image of brain 
OUTPUT: An optimal route to reach the malignant brain tumor region 

// Initializes starting point (𝑥𝑖, 𝑦𝑖), destination point (𝑥𝑓, 𝑦𝑓), obstacle positions (𝑥𝑜𝑖, 𝑦𝑜𝑖) where 
the range will be starting point to destination point, velocity as [0,0], the energy of the particle as 
0.5, max_iteration as 100 
1: Loop: 
2: For 𝑖 in range (1, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) do 

3:       𝑑𝑖𝑠𝑝𝑜 = ∑ √(𝑥𝑖 − 𝑥𝑜𝑖)2 + (

 

𝑦
𝑖

−

 

𝑦
𝑜𝑖

)
2

𝑛
𝑜𝑖=1  //distance between the current point and 

nearby obstacles. 

4:       𝑑𝑖𝑠𝑝𝑓 = √(

 

𝑥𝑖 −

 

𝑥𝑓)
2

+ (

 

𝑦
𝑖

−

 

𝑦
𝑓

)
2

//distance between current point and destination 

point. 

5:      𝑓 = (1
𝑑𝑖𝑠𝑝𝑓⁄ ) + 𝑑𝑖𝑠𝑝𝑜 + 𝑤 (𝑒

𝑛𝑜. 𝑜𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠⁄ ) //fitness function used in PSO 

6: end for 

//Select maximum fitness value and update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 value according to 𝑓 value 

7: 𝑥𝑖 =
((𝑚×𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠[𝑚𝑎𝑥𝑓𝑖𝑡][0])+(𝑛×𝑝𝑎𝑠𝑡𝑖𝑐𝑙𝑒[0]))

𝑚×𝑛
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Algorithm 1. Optimal route planning using MPSO 

8: 𝑦𝑖 =
((𝑚×𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠[𝑚𝑎𝑥𝑓𝑖𝑡][1])+(𝑛×𝑝𝑎𝑠𝑡𝑖𝑐𝑙𝑒[1]))

𝑚×𝑛
 

where distance between current point and nearby obstacles divided in 𝑚: 𝑛 ratio 

9: Set (

 

𝑥𝑖, 

 

𝑦
𝑖) as 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 

//Update velocity of particle 

10: 𝑣𝑖(𝑡 + 1) = 𝑤 × 𝑣𝑖(𝑡) + 𝑐1 × 𝑟1 × (𝑝𝑏𝑒𝑠𝑡−𝑥𝑖(𝑡)) + 𝑐2 × 𝑟2 × 𝑔𝑏𝑒𝑠𝑡−𝑥𝑖 (𝑡)) 

where 𝑤 , 𝑐1 , 𝑟1 , 𝑐2 , 𝑟2  constant values, 𝑝𝑏𝑒𝑠𝑡 = 𝑔𝑏𝑒𝑠𝑡 , 𝑣𝑖(𝑡)  initial velocity and 𝑥𝑖(𝑡)      
is current position of the particle 
//Update position of particle 

11: new_position = current_position +𝑣𝑖(𝑡 + 1) 
12: end loop 

13: if 𝑑𝑖𝑠𝑝𝑓 ≠ 0 then 

14: goto loop 
15: end if 
16: Output Solution and Return 

4. Experiential Results and Analysis 

4.1. Experimental Setup 

The simulation for optimal path selection in robot-assisted surgery is implemented in 
Python, using segmented MRI images as the foundation for constructing the surgical envi-
ronment. These images are preprocessed using libraries such as OpenCV and NumPy to ex-
tract anatomical regions of interest, specifically, the tumor (target area) and critical structures 
like blood vessels and nerve cells, which act as obstacles. The 2D environment is created by 
mapping the segmented MRI slices into a coordinate grid, where each pixel corresponds to a 
physical location in the anatomy. Obstacles are introduced by generating binary masks from 
the segmented images and translating these into an occupancy grid or cost matrix, where 
obstacle regions are assigned high traversal costs or marked as impassable. The MPSO algo-
rithm searches for the optimal path from a defined surgical entry point to the tumor, with 
each particle representing a candidate trajectory. The fitness function evaluates each path 
based on its length, safety (distance from obstacles), and smoothness, applying penalties for 
intersecting or approaching sensitive structures. Visualization is performed using matplotlib, 
allowing the dynamic plotting of the surgical field, obstacle regions, tumor location, and par-
ticle trajectories. This visual feedback not only aids in interpreting the algorithm's behavior 
but also helps validate the safety and efficiency of the generated paths. The simulation pro-
vides a realistic, flexible environment for testing and refining path-planning algorithms in 
robot-assisted surgical procedures.    

4.2. Empirical Analysis 

We have performed experiments to find out the optimal value of inertia weight (𝑤), 

cognitive parameter (𝑐1) and social parameter (𝑐2) considering four starting points (the inser-
tion points of the robotic arm) and the targeted tumor cell. From empirical analysis it can be 

observed that for four different starting points, it generates different optimal values for 𝑤, 

𝑐1 and 𝑐2 respectively, as presented in Table. 1. 

Table 1. Four starting points and the corresponding optimal values of 𝑤, 𝑐1 and 𝑐2. 

Starting Points Inertia Weight (𝒘) Cognitive Parameter(𝒄𝟏) Social Parameter(𝒄𝟐) 

61,155 0.5 0.8 0.8 

66,125 0.5 0.6 3.5 

70,191 0.6 0.4 2.5 

76,68 0.5 0.6 2.5 

 

Figure 4. describes the comparison among all the values of inertia weight (𝑤), cognitive 
parameter (𝑐1) and social parameter (𝑐2) for four different starting points. 

(Cont…) 
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(a) 

 
(b) 

 
(c) 

Figure 4. Finding optimal value of (a) Inertia weight (𝑤); (b) Cognitive parameter (𝑐1); (c) Social 

parameter (𝑐2). 

4.3. Results analysis 

The MPSO algorithm is used for path planning from four distinct starting points toward 
a targeted tumor cell in a simulated environment. Each starting point represents a potential 
insertion point for the robotic arm, and the tumor site serves as the destination. The simulated 
environment contains various obstacles, such as blood vessels and nerves, which must be 
avoided to ensure safe navigation. The MPSO algorithm initializes particles near each starting 
point, evaluating their fitness based on path length and obstacle avoidance. The optimal val-
ues for inertia weight (𝑤), cognitive parameter (𝑐1), and social parameter (𝑐2) are computed 
for each starting point to balance exploration and exploitation in the search for the optimal 
path. The particles iteratively update their positions, converging on the ideal route that mini-
mizes the path length while avoiding obstacles. The paths generated by MPSO are distinct 
for each starting point, adapting to different obstacle configurations and demonstrating effi-
cient and safe navigation. The results show that MPSO provides a reliable and adaptable so-
lution for robotic path planning in minimally invasive surgeries, ensuring precise navigation 
to the tumor while minimizing damage to surrounding tissues. We have considered three 
distinct environments, as described below. 

4.3.1. Sparse Environment 

In a sparse environment where the number of obstacles is set to 5. It can be observed 
from Fig. 5 that the paths originating from points (66, 125) and (76, 68) achieved the best 
results, successfully avoiding all obstacles (such as blood vessels, nerves, etc.) along the solu-
tion path. However, the paths from the other two starting points failed to produce feasible 
results. Further analysis revealed that the starting point (66, 125) yielded the best fitness value 
of 19.10 among the two feasible solutions, making it the recommended optimal solution for 
this particular problem instance. 
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Figure 5. Experimental comparison of the four starting points in a sparse environment 

4.3.2. Dense Environment 

In a dense environment, where the number of obstacles is set to 10, it can be observed 
from Fig. 6 that the paths emerging from the points (66, 125) and (76, 68) achieved the best 
results, as both paths successfully avoided obstacles. However, the other two starting points 
failed to generate any feasible results. Between the two feasible solutions, the starting point 
(76, 68) produced the best fitness value of 22.07 and the best solution for the problem in-
stance. 

 

Figure 6. Experimental comparison of the four starting points in a dense environment 

4.3.3. Highly Dense Environment 

In this complex environment, where the number of obstacles is set to 15, it can be ob-
served from Fig. 7 that the path originating from the point (66, 125) achieved the best result, 
successfully avoiding all obstacles. The other three starting points failed to generate any fea-
sible results. This experiment also revealed that the starting point (66, 125) provided the best 
fitness value of 14.08, making it the recommended optimal solution for this particular prob-
lem. 



Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Dasgupta, et al. 507 
 

 

 

Figure 7. Experimental comparison in a highly dense environment 

Another experiment was conducted to determine the best fitness values for sparse, 
dense, and highly dense environments, considering four different starting points: (61, 155), 
(66, 125), (70, 191), and (76, 68). As observed in Fig. 8, the starting point (66, 125) yielded the 
maximum fitness value of 19.10 in the sparse environment. In the dense environment, the 
starting point (76, 68) produced the most promising solution, with a fitness value of 22.07. In 
contrast, in the highly dense environment, points (61, 155) and (66, 125) achieved the highest 
fitness value of 14.08, making them the most promising solutions. The path derived from the 
point (66, 125) demonstrated the best fitness value at inertia weight (w) = 0.5, cognitive pa-
rameter (c1) = 0.6, and social parameter (c2) = 3.5 across all experiments. This path also 
successfully avoided all obstacles, including blood vessels, nerves, and other objects, even in 
an extremely dense environment with 15 obstacles. 

 

Figure 8. Comparisons of different fitness values 

Finally proposed MPSO algorithm was evaluated in both sparse and dense environ-
ments, with its performance compared against the standard PSO and Improved PSO (IPSO) 
algorithms [12]. In the sparse environment Fig. 9. (a), MPSO demonstrated superior perfor-
mance, achieving a maximum fitness value of 19.10 and converging within approximately 10 
iterations. In contrast, PSO and IPSO achieved lower maximum fitness values of 14.00 and 
12.90, requiring 80 and 30 iterations, respectively, to reach the target. This indicates that 
MPSO not only produced better quality solutions but also did so more efficiently in terms of 
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the number of iterations required. In the dense environment Fig. 9. (b), although the maxi-
mum fitness value obtained by MPSO was recorded as slightly lower than 15.08, it still show-
cased faster convergence by reaching this value in about 13 iterations. 

On the other hand, PSO and IPSO produced slightly higher fitness values of 15.50 and 
15.80, but both required 20 iterations to achieve these results. Despite the marginally lower 
fitness value in the dense environment, the quicker convergence of MPSO indicates its effi-
ciency and potential for better performance, particularly in sparse environments. These results 
highlight the MPSO algorithm's capability to produce high-quality solutions more rapidly than 
the standard PSO and IPSO algorithms, underscoring its effectiveness in varying environ-
mental conditions. Initially, the fitness value was found to be larger compared to successive 
iterations. This phenomenon can be attributed to the initial condition where the distance 
between the insertion point of the robotic arm (the starting point) and the targeted malignant 
cell in the segmented MRI image was at its maximum. As the program progresses and iterates, 
the algorithm works towards minimizing this distance, gradually decreasing the fitness value. 
The fitness value reflects how close the robotic arm is to achieving its goal of accurately 
targeting the malignant cell. The large initial distance initially results in a higher fitness value, 
indicating a suboptimal state. Each iteration reduces the distance as the algorithm converges 
towards an optimal solution, lowering the fitness value. This iterative process of minimizing 
the distance highlights the algorithm's efficacy in improving the precision of the robotic arm's 
movements, ultimately leading to the accurate targeting of the malignant cell in the MRI im-
age. 

 
(a) 

 
(b) 

Figure 9. Comparison of Iterative Convergence among PSO algorithm, IPSO algorithm and MPSO 
algorithm in (a) Sparse environment; (b) Dense environment. 
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5. Conclusions 

This paper describes the MPSO algorithm to analyse complex patterns in medical images 
accurately, and the result is an intelligent optimal path planning approach for Robotic Assisted 
Invasive Surgery. Using an efficient search space exploration approach, this strategy seeks to 
find optimal solutions that minimise path length, avoid obstacles and maximise tumour region 
convergence while reducing recovery time and pain for patients undergoing cancer treatment. 
The MPSO algorithm reduces the risk of damaging healthy tissues, speeds up computation 
times, allows for real-time decision-making during surgery, shortens operation times and im-

proves accuracy by specifying values for the inertia weight (w), cognitive parameter (𝑐1) and 
social parameters (𝑐2). The suggested ideal path might need to be dynamically adjusted during 
surgery to account for variations in the tumour's size, shape, or location. Future research 
should concentrate on strong safety precautions and fail-safe mechanisms to shield patients 
from unintentional injury. With potential applications extending beyond brain tumour surgery 
to various cancerous tumour surgeries, the MPSO algorithm significantly improves surgical 
outcomes by providing a dependable and optimised path that combines safety and precision, 
crucial components in contemporary medical procedures. 

 While the MPSO approach demonstrates promising results in surgical path planning, 
several limitations exist. First, the performance of MPSO is highly dependent on parameter 
tunings, such as inertia weight and acceleration coefficients—which may require empirical 
adjustment for different surgical scenarios. Additionally, although MPSO excels in continuous 
spaces, it may struggle with fine-grained obstacle boundaries, especially in cases where ana-
tomical structures are densely packed or poorly segmented. The method also assumes static 
obstacles and does not account for tissue deformation or real-time changes during surgery, 
which limits its applicability in dynamic, real-world environments. Furthermore, MPSO can 
be computationally expensive for high-resolution MRI-based maps, especially when the 
search space is large or requires high-precision avoidance. Lastly, validation is currently lim-
ited to simulated environments, and the method has not yet been tested on actual surgical 
robots or in clinical settings, which may introduce unforeseen practical challenges. 
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