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Abstract: Cybersecurity is continuously challenged by increasingly sophisticated and dynamic 

cyber-attacks, necessitating advanced adaptive defense mechanisms. Deep Reinforcement Learning 

(DRL) has emerged as a promising approach, offering significant advantages over traditional intrusion 

detection methods through real-time adaptability and self-learning capabilities. This paper presents an 

advanced adaptive cybersecurity framework utilizing five prominent DRL algorithms: Deep 

Q-Network (DQN), Proximal Policy Optimization (PPO), Twin Delayed DDPG (TD3), Soft Ac-

tor-Critic (SAC), and Asynchronous Advantage Actor-Critic (A3C). The effectiveness of these algo-

rithms is evaluated within complex, realistic simulation environments using live-streaming data, em-

phasizing key metrics such as accuracy (AUC-ROC), response latency, and network throughput. Ex-

perimental results demonstrate that the SAC algorithm consistently achieves superior detection accu-

racy (95% AUC-ROC) and minimal disruption to network performance compared to other ap-

proaches. Additionally, A3C provides the fastest response times suitable for real-time defense sce-

narios. This comprehensive comparative analysis addresses critical research gaps by integrating tradi-

tional and novel DRL techniques and substantially validates their potential to improve cybersecurity 

defense strategies in realistic operational settings. 

Keywords: A3C; Adaptive Defense; Cybersecurity; Deep Reinforcement Learning; Intrusion       

Detection Systems; Network Security; SAC. 

 

1. Introduction 

The field of cybersecurity is witnessing a continuous increase in the complexity and 
sophistication of digital attacks, necessitating highly adaptive defensive approaches capable of 
responding to new threats in real-time. To address this, machine learning (ML) [1]–[3] and 
deep learning (DL)[4], [5] approaches have been widely applied in intrusion detection. While 
these models perform well on known attacks, they often struggle to generalize to new or 
evolving threats and typically require retraining with updated data.  

Deep reinforcement learning (DRL) has emerged as one of the most promising direc-
tions for building cybersecurity systems capable of self-learning and making optimal decisions 
during attacks[6]. Reinforcement learning techniques are distinguished by their ability to allow 
intelligent agents to interact directly with the network environment, enabling the discovery of 
new defense strategies that outperform fixed rules[7]–[10] or in this case traditional intrusion 
detection models. For instance, recent studies have shown that traditional ML models trained 
on historical data suffer from performance degradation when facing unfamiliar attacks. In 
contrast, reinforcement learning agents improve through direct interaction with dynamic 
environments, giving them better generalization and adaptability. 

Despite the initial successes of applying DRL in cybersecurity, there remains a gap in 
leveraging the latest algorithms in this field[11]. Recent literature reviews have indicated that 
many advanced DRL techniques have not yet been fully utilized in modern intrusion detec-
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tion systems. Although, most prior attempts relied on well-known algorithms such as Deep 
Q-Networks (DQN), Proximal Policy Optimization (PPO), and Twin Delayed DDPG 
(TD3), which have shown success in classifying and responding to cyber threats[6]. In con-
trast, newer algorithms such as Soft Actor-Critic (SAC) and Asynchronous Advantage Ac-
tor-Critic (A3C) that combine entropy regularization mechanisms and asynchronous parallel 
training can improve exploration capabilities and reduce convergence problems, resulting in 
more robust performance in complex environments[12], [13]. Therefore, there is a need to 
study the integration of these advanced algorithms in adaptive cyber defense contexts, par-
ticularly after identifying each approach's relative strengths and weaknesses through per-
formance analysis, to understand their potential improvements over traditional methods 
better. Research [14] focuses on applying the DQN algorithm for real-time cyber threat de-
tection, demonstrating its effectiveness in reducing false positives compared to traditional 
methods. Research [11] presents a comparative analysis of DRL algorithms in intrusion de-
tection systems, recommending SAC and PPO for their balanced accuracy and response time 
performance. 

This study aims to conduct a comprehensive comparative evaluation of adaptive cy-
bersecurity defense mechanisms based on DRL through the following: 

• Implementing and comparing the latest reinforcement learning algorithms (e.g., SAC 
and A3C) alongside previously used algorithms (DQN, PPO, and TD3) within a unified 
experimental setup, enabling a comprehensive performance comparison across diverse 
cyber threat scenarios; 

• Expanding the experimental setup to include more complex network simulation envi-
ronments that closely resemble real-world conditions, using live streaming network data 
to test each algorithm’s real-time adaptability; and 

• Evaluation metrics such as the Area Under the ROC Curve (AUC-ROC) are adopted to 
measure classification accuracy and latency, assess reaction speed and throughput, and 
evaluate defence actions' impact on network performance and data flow. 
The remainder of this paper is organized as follows: Section 2 reviews recent DRL ap-

proaches in cybersecurity and related work; Section 3 describes the methodology, including 
DRL algorithm design and simulation environment; Section 4 presents the experimental re-
sults and discusses findings and implications; and Section 6 concludes the study and outlines 
directions for future research. 

2. Literature Review 

In recent years, several research efforts have been aimed at utilizing DRL in various 
network security domains, including intrusion detection systems (IDS) and proactive cyber 
defense. Below, we highlight the most notable trends from 2020 to 2024 and how they inform 
our work. 

Many recent studies have focused on employing reinforcement learning algorithms to 
build more adaptive IDS solutions. In this context, Yang et al. [15] presented a comprehen-
sive survey of DRL applications in IDS. The review demonstrated that some DRL models 
have outperformed traditional deep learning methods on standard benchmark datasets. 
However, it also noted that many of the latest sample-efficient DRL algorithms remain un-
derexplored in this domain. 

One practical example is the study by Badr et al. [16], which demonstrated the feasibility 
of using the Dueling Double Deep Q-Network (D3QN) architecture to build a self-learning 
IDS. Their study compared the DRL approach against traditional supervised models using 
datasets like KDD Cup 99 and ISCX 2012 and found that traditional models struggled with 
generalization over time due to model drift. In contrast, the DRL model overcame this by 
continuously learning through interaction, reducing the need for frequent retraining and al-
lowing better adaptation to new threats. 

Additionally, some works highlighted the potential of reinforcement learning in im-
proving feature selection for IDS rather than relying on all available features, which may in-
clude irrelevant data. For example, proposed a model where a DRL agent learns a policy to 
select an optimal subset of network features before passing them to a traditional classifier. 
This approach improved detection accuracy and reduced computational complexity, inte-
grating algorithms like KNN and SVM alongside DRL in a unified framework. Overall, these 
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studies support the strong potential of DRL in enhancing IDS capabilities, particularly when 
agents learn progressively from successful and failed detection attempts. 

Beyond intrusion detection, another line of research focuses on deploying DRL agents 
to take automated defensive actions upon detecting attacks in what is known as adaptive or 
moving target defense (MTD). The idea is that an intelligent agent continually changes system 
states or configurations to make it harder for attackers to succeed. For instance, Water et al. 
[17] used Microsoft’s CyberBattleSim to train a defense agent that deploys honeypots as a 
form of dynamic deception. They showed that changing deception strategies reduced the 
effectiveness of automated attacks and diverted attackers to decoy environments. Similarly, 
Zennaro and Erdődi [18] proposed a DRL approach to simulate Capture-the-Flag attack 
scenarios, where the defense agent learned to randomly perform port hopping on a server to 
disrupt attacker strategies. Although these strategies added complexity to the training envi-
ronment, they significantly increased the failure rate of attackers. 

Another important development is using multi-agent game models, where both attacker 
and defender agents learn simultaneously. Xiong et al. [19] modeled the attacker-defender 
interaction as a multi-player Markov game, combining game theory (Stackelberg equilibrium) 
with multi-agent reinforcement learning (e.g., WoLF algorithm) to reach a strategic balance. 
Their experiments showed that the defender agent could arrive at a dynamic optimal strategy 
that outperformed traditional Markov models like Nash-Q in maximizing its protection re-
ward. 

Furthermore, some recent studies have included Quality of Service (QoS) factors in 
defense decision-making. Lei et al. [20] demonstrated that it is possible to design an MTD 
defense policy that balances security benefits (e.g., reducing damage and preventing intru-
sions) with network service quality (such as data rates and transmission delays). This inspired 
other researchers to propose evaluating defense agents not only by detection accuracy but 
also by real-time performance metrics like throughput and latency—an approach we also 
adopt in this research to ensure both security and operational efficiency. 

The aforementioned research employed a range of DRL algorithms, emphasizing spe-
cific types. The DQN algorithm and its enhancements (Double-DQN, Dueling DQN) were 
widely used in environments with discrete defensive actions due to their ability to learn ef-
fective policies in large state spaces using neural networks[6]. Policy-based algorithms like 
PPO and A3C were notable for their training stability and consistent performance. For in-
stance, Muhati and Rawat [21] applied A3C in cognitive network security, allowing agents to 
learn asynchronously across multiple sub-environments and accelerate training while main-
taining stability. 

Other researchers favored off-policy actor-critic algorithms for continuous action spaces 
and sample efficiency. Notable among these were DDPG and its improved TD3. For ex-
ample, [22] developed a TD3-based model (TD3-AP) to prioritize IDS alerts and reduce false 
positives, enhancing analyst efficiency. Recently, SAC emerged as one of the most powerful 
off-policy algorithms due to its ability to balance exploration and exploitation via entropy 
maximization [11]. Research [23] also introduced the SAC-AP model for alert prioritization, 
achieving up to 30% reduction in defense losses compared to traditional DDPG. These re-
sults show that SAC improved the agent’s ability to identify and respond to critical alerts, 
reducing the burden on human analysts and improving system readiness [24], [25]. 

Based on these studies, DRL has shown strong potential in cybersecurity. However, 
most works focus on evaluating individual algorithms and often rely on static datasets, making 
it difficult to assess performance in real-time settings under similar conditions [26], [27][. This 
study addresses these gaps by comparing five DRL algorithms under the same experimental 
setup: DQN, PPO, TD3, A3C, and SAC. The evaluation uses simulated and live-streaming 
network data, with performance assessed through detection accuracy, response time, and 
network impact. 

3. Methodology 

In this section, we describe the proposed approach for adaptive cybersecurity defense 
based on DRL, including the formulation of the learning problem, simulation environment, 
learning components states, actions, rewards), applied algorithms, training settings, and 
evaluation metrics. 
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3.1. Framing Adaptive Defense as a Reinforcement Learning Problem 

The network security problem was formulated as a Markov Decision Process (MDP), in 
which a defense agent was designed to interact with the network environment at sequential 
time steps. At each step, the environment provided a state 𝑠𝑡, representing a snapshot of the 
network’s security status, including the condition of devices and servers, e.g., compromised or 
safe), traffic levels, and alerts from intrusion detection systems. 

A set of defensive actions 𝐴(𝑠𝑡) was associated with each state, from which the agent 

selected an action based on its current policy 𝜋. These actions included resetting firewall 
rules, isolating suspicious devices, deploying honeypots, updating access policies, or re-
questing manual inspection. The action space was designed to support discrete and contin-
uous types of actions, enabling different DRL algorithms. For example, toggling firewall rules, 
e.g., turning ports and services on or off) was categorized as discrete, while adjusting IDS 
sensitivity or data transfer limits were treated as continuous. 

Once an action was executed, the environment transitioned to a new state 𝑠𝑡+1 nd re-

turned a reward 𝑟𝑡, indicating the effectiveness of the action taken. The reward function was 
constructed to promote rapid and accurate threat mitigation. A high positive reward was as-
signed for successfully preventing or containing attacks, e.g., isolating an infected device 
before malware propagation). At the same time, penalties were given for missed attacks or 
false alarms that caused service disruption. Action costs were also taken into ac-
count—though beneficial to security, certain actions could degrade system performance, e.g., 
disconnecting a critical server). Thus, rewards were adjusted to encourage a trade-off between 
protection and availability. 

The agent’s objective was to learn an optimal policy 𝜋∗ that maximized the expected 
cumulative reward over time. To achieve this, value-based and policy-based reinforcement 
learning approaches were applied by implementing and comparing five DRL algorithms: 
DQN, PPO, TD3, A3C, and SAC. 

For DQN, enhancements such as Double DQN and Dueling DQN were incorporated 
to improve stability and mitigate Q-value overestimation. Experience replay was employed to 
store and sample past transitions, which improved training independence. 

For PPO, an on-policy algorithm, clipped surrogate loss functions were used to maintain 
training stability and prevent abrupt policy changes. A3C was implemented in a mul-
ti-threaded configuration, allowing experiences to be collected simultaneously from multiple 
simulated environments and enabling more diverse exploration. 

On the off-policy side, TD3 was chosen to handle continuous action spaces. It was 
preferred over DDPG due to its ability to reduce update variance through twin Q-networks 
and smoothen target policy. The simulation environment included continuous control ele-
ments e.g., adjusting IDS alert thresholds between 0 and 1) to evaluate TD3’s effectiveness. 

SAC was also integrated as a recent and powerful actor-critic algorithm, selected for its 
sample efficiency and exploration capabilities through entropy maximization. SAC was de-
signed to optimize immediate rewards and maintain controlled stochasticity in policy selec-
tion, reducing the chance of converging to suboptimal strategies. 

The SAC implementation used two Q-networks and a stochastic policy network, trained 
using adaptive entropy-weighted gradient descent. The neural network architecture across all 
agents was kept consistent to ensure fair comparisons. Each agent utilized a multi-layer neural 
network to approximate the policy or value function from approximately 100 encoded input 
features representing the network state. 

3.2. Simulation Environment and Data Used 

A custom simulation environment was developed to emulate a medium-scale enterprise 
network of multiple interconnected nodes linked through routers and switches to fulfill the 
research objectives, including PCs, database servers, and web servers. The attack scenarios 
were implemented using a flexible simulation platform inspired by well-known open-source 
frameworks such as CyberBattleSim and CybORG. 

A virtual attacker agent was incorporated and programmed with multiple intrusion 
strategies. These simulated attacks included malware propagation, distributed deni-
al-of-service (DDoS) attacks on core servers, phishing attempts through malicious emails, 
port-based intrusions, and advanced persistent threats (APTs) involving multi-stage infiltra-
tion techniques. 
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Natural background traffic, such as web browsing and file transfers, was generated 
concurrently with attack activities to increase realism. This setup required the defense agent to 
accurately identify malicious behavior embedded within legitimate network flows, enhancing 
the complexity of the detection task. 

In addition to the simulation environment, semi-live data from real network recordings 
was used to evaluate the model. Specifically, the CIC-IDS2018 dataset was employed, con-
taining labelled benign and malicious traffic instances. The dataset was streamed continuously 
to the agent in real-time, simulating an operational environment. During this test, the agent 
was required to process each incoming flow or packet as it arrived and to make immediate 
decisions, e.g., labeling a session as malicious for isolation), without prior knowledge of future 
events. This setup thoroughly evaluated the agent’s real-time responsiveness and adaptability. 

3.3. Training Settings and Parameters 

Each DRL agent was trained over a sufficient number of episodes to ensure the con-
vergence of a stable policy. The simulation was organized into episodes, where each episode 
represented one full day of network activity, including a predefined number of randomized 
attack events. 

A discount factor 𝛾 = 0.99 was used to emphasize long-term rewards, which was par-
ticularly important in handling advanced persistent threats (APT), where the consequences of 
an action may unfold over multiple time steps. For the DQN algorithm, the initial exploration 

rate was set to 𝜀 = 0.2, and was gradually decayed throughout training. In contrast, poli-
cy-based methods such as SAC utilized entropy regularization or guided noise to promote 
exploration. 

The learning rate for all neural network models was fixed at 10−4, based on results from 
preliminary experiments. To account for the differences in data usage strategies, off-policy 
algorithms (DQN, TD3, SAC) were trained for up to 500,000 interactions, benefiting from 
experience replay mechanisms. Meanwhile, on-policy algorithms (PPO, A3C) require more 
training episodes approximately 1,000) due to discarding outdated experiences after each 
policy update. 

All DRL models were implemented using the Stable Baselines library, with customized 
modifications to adapt them for cybersecurity contexts, including tailored reward functions 
and the simulation of packet-level delays. 

Throughout the training phase, detailed logs were maintained for each agent, capturing 
key performance indicators such as attack detection rates, false positive rates, decision latency 
per event, and network throughput stability during defense operations. 

3.4. Evaluation Metrics 

After training, the agent policies were frozen and tested on new simulation scenarios and 
live-streamed data. The performance of each DRL agent was evaluated using three categories 
of metrics to capture both security effectiveness and operational efficiency: 

• Detection Accuracy and False Positive Rate: Evaluation was based on confusion ma-
trices, from which the True Positive Rate (TPR) and False Positive Rate (FPR) were 
derived. Additionally, the Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC) was used as a global metric of classification quality, where values ap-
proaching 1.0 indicated strong separation between attack and normal traffic. During 
live-streaming evaluations, where traffic patterns were more dynamic and class imbal-
ance was expected, Precision and Recall were also used to assess the model’s ability to 
maintain high detection quality while minimizing false alarms. 

• Latency Response (Time): Latency was defined as the time elapsed from attack initiation 
to the agent’s first effective defensive action. This was especially important for 
fast-moving attacks such as malware propagation or DDoS. Real-time readiness was 
characterized by response times in the order of seconds or less. 

• Throughput: Throughput was measured as the rate of legitimate data successfully 
transmitted during defense (in Mbps). The comparison was made between defended and 
undefended network states. A defense mechanism was considered acceptable if 
throughput degradation remained below 5%. Instances of false packet drops were also 
logged as part of the performance audit. 
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3.5. Summary of Algorithm Characteristics 

To support fair evaluation, each algorithm was selected to represent a different class of 
reinforcement learning paradigm, covering both discrete and continuous control settings. 
Table 1 compares algorithm types and strengths relevant to discrete and continuous control in 
cybersecurity environments. 

Table 1. Summary of DRL Algorithm Characteristics Used in the Evaluation. 

Algorithm Type Action Space Strengths 

DQN Off-policy, value-based Discrete Simple and robust; suited for rule toggling 

PPO On-policy, policy-gradient Discrete/Cont. Stable training; moderate compute effi-
ciency 

TD3 Off-policy, actor-critic Continuous Reduces update variance; suitable for 
tuning 

A3C On-policy, asynchronous Discrete/Cont. Fast response; enables parallel learning 

SAC Off-policy, entropy-based Continuous Strong exploration; high-dimensional 
support 

 

This evaluation framework ensures that each algorithm is tested under realistic and 
dynamic conditions, with results interpreted across effectiveness and operational impact 
dimensions. The general DRL workflow evaluated in this study is depicted in Figure 1, where 
agent actions are guided by learned policies and evaluated through feedback from the envi-
ronment. 

 

Figure 1. Workflow of a DRL-based intrusion detection system used for evaluation.  

4. Results and Discussion 

4.1. Results 

After completing the training phase and confirming policy convergence for all DRL 
agents, a series of evaluation experiments were conducted in environments not seen during 
training. These included compound attack scenarios where multiple attack types occurred 
simultaneously. The following subsections summarize the most notable findings: security 
performance, operational efficiency, and live data streaming evaluations.  

4.1.1. Attack Detection and Mitigation Performance 

The ability of each agent to detect and mitigate threats was evaluated using classification 
metrics. It was found that the SAC algorithm consistently outperformed others. SAC 
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achieved the highest AUC-ROC score of 0.95, indicating its superior ability to distinguish 
malicious behavior under varying thresholds. This is illustrated in Figure 2.  

SAC also maintained a TPR of approximately 0.90 for malware and 0.85 for DDoS, with 
an average FPR below 0.05. TD3 followed closely with an AUC of approximately 0.92, es-
pecially excelling in scenarios requiring continuous actions such as traffic regulation. 

PPO achieved a solid AUC of 0.89, showing limitations in handling multi-stage attacks. 
A3C recorded an AUC of 0.88, offering fast reaction times but suffering slightly due to its 
on-policy nature. DQN performed lowest with an AUC of 0.85, although this still surpassed 
traditional methods typically between 0.70–0.80). DQN struggled with continuous or 
high-dimensional action spaces but benefitted from Double and Dueling extensions that 
improved feature relevance filtering. These findings are reflected in Figure 3, which compares 
the classification accuracy of the five algorithms. SAC achieved the highest accuracy (95%), 
followed by TD3 (92%) and PPO (89%), while DQN remained lowest at 85%. 

 

Figure 2. AUC-ROC per algorithm, reflecting classification effectiveness in distinguishing malicious 
vs. normal traffic. 

 

Figure 3. Classification accuracy per algorithm. 

Regarding cumulative rewards, SAC consistently achieved the highest average reward 
per episode, reflecting early threat interception with minimal cost. TD3 and PPO recorded 
moderate to high rewards. A3C performed well in short episodes but struggled with longer 
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sequences due to frequent policy overwrites. DQN earned the lowest rewards, indicating less 
efficient adaptation. The reward trajectories over training episodes are visualized in Figure 4. 

4.1.2. Response Time and Operational Metrics 

The average response time (latency) per algorithm is shown in Figure 5. The A3C agent 
responded fastest, with an average latency of 1.8 seconds, benefiting from asynchronous 
parallel learning. SAC followed with a response time of 2.5 seconds, maintaining real-time 
usability. PPO and TD3 exhibited average response times of 3 seconds, while DQN lagged 
with an average of 4 seconds, especially when handling compound attacks. The average traffic 
reduction during defense operations was minimal in terms of throughput impact. SAC pro-
duced the lowest throughput drop ~3%, as illustrated in Figure 6. PPO and A3C followed 
with ~4%, while TD3 caused about 5% due to global rate-limiting actions. DQN was the 
most disruptive, occasionally dropping throughput by up to 6% due to drastic counter-
measures like component resets. 

 

Figure 4. Cumulative reward over training episodes, showing learning progression and policy effi-
ciency. 

 

Figure 5. Average response time (latency) for each algorithm. 
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Figure 6. The throughput drop percentage was compared to the baseline (no defense). 

Latency added by defense mechanisms remained under 10 milliseconds per packet, in-
dicating negligible performance impact. 

4.1.3. Performance on Live Data Streaming 

All DRL agents were tested on live-streaming network traffic from the CIC-IDS2018 
dataset to evaluate adaptability in realistic settings. During these evaluations, SAC and PPO 
demonstrated strong generalization capabilities and maintained low FPR, even when con-
fronted with threats not encountered during training. For instance, during a stealthy port scan 
attack—absent from the training data—the SAC agent identified anomalous behavior within 
minutes and responded appropriately by blocking suspicious IPs and issuing alerts, effectively 
containing the threat before it escalated. This behavior highlights the agents' ability to detect 
subtle deviations and respond to evolving patterns in real-time. 

A slight reduction in TPR was observed under high-traffic conditions combined with 
stealthy attacks, likely due to occasional packet drops under congestion. However, the system 
maintained stable operation throughout the test. Resource usage remained within acceptable 
bounds, with CPU utilization peaking around 60% and memory consumption below 70%. 

 

Figure 7. Comparative performance of DRL algorithms on live-streamed data based on Precision, 
Recall, and AUC-ROC. 
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A comparative evaluation using Precision, Recall, and AUC-ROC was conducted to 
capture detection performance under live conditions, often involving imbalanced and dy-
namic traffic distributions. As shown in Figure 7, SAC again outperformed the other algo-
rithms, achieving a Precision of 0.93, Recall of 0.91, and an AUC-ROC of 0.95. These results 
indicate both accuracy in detection and consistency across thresholds. Conversely, DQN 
recorded the lowest performance across all three metrics, reflecting its difficulty in handling 
novel or complex traffic patterns. 

With these findings, SAC can be considered the most reliable and adaptive algorithm 
among those tested, followed by TD3 and PPO. Although DQN was the least effective in this 
setting, it outperformed many traditional approaches. Overall, the agents demonstrated a 
strong balance between detection performance, response speed, and operational efficiency, 
reinforcing the applicability of DRL-based solutions for real-time intrusion detection. 

4.2. Discussion 

The evaluation results have confirmed the effectiveness of comparing modern and tra-
ditional reinforcement learning algorithms in adaptive cybersecurity defense. Several key in-
sights were identified, which are discussed below. 

4.2.1 Impact of Algorithm Choice on Performance 

It was observed that the selection of the reinforcement learning algorithm significantly 
influenced the defense agent's performance. The SAC algorithm consistently outperformed 
the others across most metrics. Its integration of entropy maximization with off-policy 
learning enabled broader exploration while preserving long-term learning stability. This 
contributed to SAC’s ability to balance effective threat detection with minimal disruption to 
network operations. In contrast, DQN encountered limitations due to its value-based archi-
tecture and reduced generalization capacity in high-dimensional state-action spaces. These 
findings are consistent with prior research, which indicated that value-based methods typically 
require extensive interaction to perform effectively in complex environments. 

Algorithms such as PPO and A3C also yielded strong results. PPO benefited from stable 
policy updates, while A3C's asynchronous training enhanced responsiveness, particularly in 
fast-changing scenarios. However, A3C’s performance declined in long-horizon episodes 
where consistent policy retention was needed. TD3 achieved competitive outcomes, likely 
due to its enhancements over DDPG—including twin Q-networks and policy smooth-
ing—which improved learning stability. These observations affirm that algorithm selection 
should be tailored to the problem context: environments requiring rapid responses may favor 
PPO or A3C, while those involving continuous control benefit more from SAC or TD3. 

4.2.2. Adaptability to Unseen Threats and Novel Environments 

All DRL agents, particularly SAC and PPO, demonstrated adaptability to unfamiliar 
attack patterns during live-streaming evaluations. These agents could generalize to previously 
unseen or modified threats by learning behavioral patterns instead of relying solely on static 
attack signatures. 

This behavior underscores the advantage of DRL over traditional intrusion detection 
systems, which require periodic retraining to remain effective. As reported by Yang et al. [15], 
the generalization capability of DRL is critical in addressing zero-day threats, and the con-
ducted experiments support this recommendation by validating the model in realistic, 
evolving threat environments. 

4.2.3 Response Time and Operational Viability 

The trained DRL agents were observed to operate within real-time constraints, with 
average response times of just a few seconds and negligible performance degradation in 
network throughput. The slight decline in data transfer rate (~3–5%) was considered ac-
ceptable given the security benefits provided. 

These findings emphasize the practical feasibility of deploying DRL agents in production 
settings. Further improvements in latency may be achieved through model optimization or 
specialized hardware acceleration, such as FPGAs. Nevertheless, the agents exhibited reliable 
real-time behavior even when evaluated on general-purpose systems. It should also be noted 
that some prior studies have overlooked operational metrics such as latency and throughput. 
In contrast, the current study incorporated these metrics as part of the evaluation, aligning 
with practical requirements for intrusion detection deployment. 



Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Hammad and Jasim. 533 
 

 

4.2.4 Challenges and Future Work 

Despite encouraging outcomes, several challenges remain. A primary limitation concerns 
the interpretability of agent decisions. Like most deep learning systems, DRL agents function 
based on internal representations that are difficult to explain. This may hinder trust and ac-
ceptance by human operators, especially when actions result in service disruptions. Future 
work could explore Explainable Reinforcement Learning (XRL) to provide interpretable in-
sights into agent decision-making processes. 

This study did not address security concerns regarding DRL itself, but they remain an 
open issue. Recent literature has shown that DRL agents may be vulnerable to adversarial 
manipulations, and future research should consider this risk before real-world deployment. 
Moreover, the current single-agent framework could be extended into a multi-agent setting, 
where attacker and defender agents co-evolve. This would represent a more realistic adver-
sarial environment and could benefit from adversarial reinforcement learning to improve 
robustness. 

Lastly, integration with generative deep learning models (e.g., GANs or Transformers) 
may allow the simulation of rare or complex attacks during training and enhance the diversity 
of learned defense strategies. This direction, also suggested by Yang et al. [15] holds promise 
for both academic research and practical application. 

5. Conclusions 

This study presented a comprehensive comparative evaluation of adaptive cybersecurity 
defense mechanisms using DRL. The research assessed each agent's strengths under dynamic 
and realistic network conditions by integrating advanced algorithms such as SAC and A3C 
alongside established methods like DQN, PPO, and TD3 within a unified framework. 

Experimental findings demonstrated that SAC consistently delivered superior perfor-
mance across key metrics, achieving an AUC-ROC of 0.95, high precision, and minimal 
impact on system throughput. A3C showed the fastest response time, while TD3 and PPO 
offered balanced detection accuracy and training stability. These results confirm the feasibility 
of deploying DRL-based agents for real-time defense, providing a strong balance between 
detection accuracy, response speed, and service continuity. 

The study addressed a critical gap in existing research regarding the limited application of 
recent DRL algorithms in complex and evolving environments. With the expansion of algo-
rithm diversity, the use of more realistic test environments, and the adoption of a multi-metric 
evaluation framework, the research offers validated insights into the practicality and effec-
tiveness of DRL in cybersecurity. This contribution supports the development of intelligent 
and self-adaptive intrusion detection systems suitable for real-world deployment. 

Future research may explore multi-agent architectures, improve model interpretability 
through explainable reinforcement learning, and strengthen resilience against adversarial 
manipulation. Additionally, integration with generative models or deployment in large-scale 
infrastructures such as enterprise networks or cloud systems may further enhance the capa-
bility of DRL-based cybersecurity defense. 
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