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Abstract: Feature selection in most black-box machine learning algorithms, such as BERT, is based on 

the correlations between features and the target variable rather than causal relationships in the dataset. 

This makes their predictive power and decisions questionable because of their potential bias. This 

paper presents novel BERT models that learn from causal variables in a clinical discharge dataset. The 

causal-directed acyclic Graphs (DAG) identify input variables for patients’ survival rate prediction and 

decisions. The core idea behind our model lies in the ability of the BERT-based model to learn from 

the causal DAG semi-synthetic dataset, enabling it to model the underlying causal structure accurately 

instead of the generic spurious correlations devoid of causation. The results from Causal DAG Con-

ditional Independence Test (CIT) validation metrics showed that the conceptual assumptions of the 

causal DAG were supported, the Pearson correlation coefficient ranges between -1 and 1, the p-value 

was (>0.05), and the confidence interval of 95% and 25% were satisfied. We further mapped the 

semi-synthetic dataset that evolved from the Causal DAG to three BERT models.  Two metrics, 

prediction accuracy, and AUC score, were used to compare the performance of the BERT models. The 

accuracy of the BERT models showed that the regular BERT has a performance of 96%, while Clin-

ical-BERT performance was 90%, and Clinical-BERT-Discharge-summary was 92%. On the other 

hand, the AUC score for BERT was 79%, ClinicalBERT was 77%, while ClinicalBERT-discharge 

summary was 84%. Our experiments on the synthetic dataset for the patient’s survival rate from the 

causal DAG datasets demonstrate high predictive performance and explainable input variables for 

human understanding to justify prediction. 

Keywords: BERT prediction; BERT prediction comparison; Causal DAG; Clinical text analysis;   

Predictor selection. 

 

1. Introduction 

Feature selection is a critical data preprocessing step in data analytics and machine 
learning (ML). Most ML algorithms select predictors based on the correlations between 
features and the target variable rather than the underlying causal relationships. The traditional 
variable selection methods, such as annotation, filter, embedding, and wrapper methods, are 
out of sync with the ever-increasing electronic data [1]. Moreover, [2] revealed that the 
knowledge about the causal relationships between predictors and the target variable has 
potential benefits for building explainable and accurate predictive models due to the ability of 
causal discovery to extract the underlying assumptions from the dataset. While causal variable 
selection has dominated quantitative data analysis, study [3] stressed that its emergence in the 
nexus of ML and natural language processing (NLP) is new. The delay in coalescing these 
fields could be attributable to the challenge of combining the high-dimensional textual dataset 
with causal inference methods, which have been mostly quantitative[4]. Despite the difficulty 
in combining these two fields, it has become more compelling and advantageous to fix a 
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common issue with deep learning-inspired black box models like Bidirectional Encoder 
Representation from Transformers (BERT), which is that they lack transparency and ex-
plainable decision [5]. These black-box models are also impaired by the legacy of deep 
learning (DL) models, which establish correlations between variables and prediction rather 
than causation, thereby leading to spurious correlations [6]. Therefore, relying on ML models 
whose variable selection method and decision logic are not transparent is risky.  

Studies [2], [3] hinted that introducing causal perspectives to modeling variables in 
textual data can help mitigate the spurious correlation issues in traditional algorithms and 
build explainable models. Recent studies in causal ML accorded so much importance to the 
knowledge of the causal relationship between predictors and labels, improving variable se-
lection, potential confounders, avoidance of bias, and predictive accuracies in NLP tasks[6], 
[7]. Building causal relations using causal graphs from medical texts can be very important to 
medical science. It can help identify novel and interesting causal observations from clinical 
notes, which can help to understand patients’ health better. It can also help with clinical di-
agnosis and determine their prevention and treatment. Research [8] stressed the importance 
of causal knowledge discovery in the medical diagnostic process, including improving the 
accuracy of diagnosis, helping to interpret the causal relations in diagnosis, and selecting in-
tervention strategies for a particular disease. Given the critical importance of Causal 
knowledge discovery (CKD) in clinical decision-making systems, there is traction in research 
aimed at incorporating medical causal knowledge into clinical decision-support systems by 
combining related tools such as causal inference, ML, and large language models [2], [9].  

Despite the progress made in this research domain, the integration of causal inference 
with most DL approaches faces notable issues. One of the limitations is the inability to 
concurrently model high-dimensional relationships with embedded causal knowledge in the 
datasets. This problem spiraled from the lack of natural mechanisms in ML and DL to ex-
plicitly integrate causal knowledge into the learning process [10], [11]. Therefore, in most 
cases, deep learning-based algorithms such as BERT predict high-dimensional data such as 
textual clinical datasets with spurious correlations.  

Our study proposes a novel approach that leverages the causal power of causal DAG for 
variable selection while mapping the identified causal variables into the deep learning-based 
BERT models for prediction to mitigate these limitations. Our method validates the causal 
DAG assumptions using conditional independence test (CIT) criteria.  Here, we present the 
patients’ survival rate as the binary target variable and other relevant causal variables extracted 
from the semi-structured clinical notes. The causal variables are diseases, treatment, con-
founders, and the target variable.  This method allows for seamless integration of these 
causal DAG models into the BERT models for prediction. Our research bridges the gap 
between cutting-edge innovative causal discovery methods and deep learning-based models 
such as BERT models, offering a more comprehensive approach for causal analysis and 
prediction in high-dimensional clinical text datasets. The key contributions of this paper are: 
1. Perform knowledge discovery from clinical note discharge text  
2. Design a causal DAG structure from the discovered knowledge 
3. Validate the Causal DAG structure with CIT criteria 
4. Predict the semi-synthetic text variables obtained from Causal DAG using regular BERT 

Models, and its medical variants such as Clinical-BERT and Clinical-BERT discharge 
summaries. 
The rest of the paper is presented as follows: section 2 reviews related works to this 

study. In section 3, we discuss the material and the methods adopted in this study, while in 
section 4, we implement our experiment and present the results. Section 5 concludes the work 
and suggests future work 

2. Literature Review 

This section reviews the related research at the intersection of causal inference and ML 
predictions. We then show how our study differs from existing studies. We later establish 
some causal preliminaries for causal discovery used in this study. 

2.1. Causal Inference and Machine Learning Predictions 

Causal inference and discovery have continued to impact the general artificial intelli-
gence domain, as [12] stressed that causality is one of the most challenging and open issues in 
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ML and artificial intelligence. A significant issue on the import of causal structure in predic-
tion modeling was expounded by [9], where a study on DAG and causal thinking in clinical 
risk prediction submitted that DAG could be used to model a priori causal assumptions to 
inform variable selection strategies for answering causal questions. Furthermore, they con-
cluded that using DAGs to identify Markov Blanket variables may be a useful, efficient 
strategy to select predictors in clinical risk prediction models provided strong knowledge of 
the underlying causal structure can be extracted from the data generating process. Research by 
[12] focused on how to encode and select appropriate sets of attributes in a clinical text to 
optimize the results of ML models. They suggested that modeling the Naïve Bayes model with 
varying sets of attributes showed that extracting the appropriate attributes to be coded (such 
as diseases, procedures, aggravating factors, etc.) can improve algorithm prediction accuracy.  

Moreover, recent research has examined the intersection of NLP and causal modeling, 
which is called causal NLP [7]. Some of these researches establish the possibility of extracting 
causal variables from natural language and structured datasets using causal structure and 
Markov assumptions for onward prediction by ML algorithms. 

Table 1. Summaries of related studies of causal learning as a basis for machine learning prediction. 

Ref Research Focus  Method  Evaluation Method  

[9]  The use of Directed acyclic 
graphs in clinical risk prediction 

modeling 

Incorporating causal 
knowledge into clinical risk 
prediction model using the 

Markov principle 

Logistic regression model 

[12]  Selecting ML features for  
semi-automatic ICD-9-CM  

encoding 

Extracting clinical discharge 
notes with graph-assisted 

matching 

Recall rate with Naïve Bayes 
Model 

[6] Using causality with ML to  
obviate the limitations of    

explainable model techniques 
for identifying predictive   

variables 

Measuring ML predictions 
from causal structure using 

synthetic data 

Linear Regression (LR),   
Random Forest (RF), and 

Neural Network. 

[14]  Integrating causal model    
ontologies with LIME for  ML 

explanations in educational 
admissions 

The use of causal structure and 
LIME to extract admission  
criteria from an admission   

database  

Gaussian Naïve Bayes,     
Decision Trees, and Logistic 

Regression. 

[1]  Design and validation of a 
Causal Model that focused on 

educational datasets 

The study designed and vali-
dated a causal graph from an 

educational dataset on the 
Strengthening Education in 

Northeast Nigeria (SENSE - 
EGRA) project.  

The causal graph from the  
dataset was validated using the 
Conditional Independence Test 

(CIT). 

[2] Causality-based feature selec-
tion: Methods and evaluations 

Causal-based variable selection 
using a synthetic and real-world 

dataset 

The study used the CausalFS 
algorithm 

 

The study by [2], [6], [13] reinforced the assertions that causal variable selection for 
onward prediction by ML helps build robust and explainable models. However, a study [1], 
[13] implemented a similar study that uses a student admission dataset and letter identification 
subtask. Their studies validated the causal DAG with a conditional independence test. 
However, our study uses causal DAG to design and validate the assumptions of the patient 
survival rate in the semi-structured clinical text dataset for correctness before mapping it to 
the BERT models for prediction. 

2.2. The Combination of Causal Directed Acyclic Graph and BERT Models 

In this study, we propose the possibility of deep learning-inspired models, such as the 
BERT model, and its medical variants, such as Clinical-BERT and Clinical-BERT discharge 
summary, which are inherently black-box models to build predictions from extracted causal 
relations from a clinical dataset to compare their performance on synthetic clinical causal 
dataset. 
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Table 2. Regular BERT model and its clinical variants. 

Model Training dataset Specialty 

BERT Dataset from Book Corpus and Wikipedia  General natural language tasks 

ClinicalBERT Dataset from clinical text and electronic 
health records 

Clinical text analysis 

ClinicalBERT-discharge 
summary 

Discharge summary from MIMIC II Discharge summary analysis 

 

Each BERT model performs differently on different tasks as shown in Table 2. While 
BERT is versatile for general natural language tasks, ClinicalBERT performs better on elec-
tronic clinical text analysis. In contrast, ClinicalBERT-discharge summaries are tuned for 
clinical applications in discharge summaries [14], offering excellent performance on discharge 
text-related tasks [15]. Therefore, we generate causal variables from the Causal Directed 
Acyclic (DAGs) graphs for the eventual prediction of patient survival in a clinical text to 
showcase the concept of statistical independence and probability and how they can help to 
extract relevant variables for prediction [6]. The causal concepts used are explained in the next 
subsection. 

2.3. Causal Preliminaries: The Concept of Independence 

We adopt the causal formalism of independence, and we show that two variables, 𝑋 and 

𝑌, are independent when 𝑋 does not change 𝑌, and the reverse is the case. In terms of sta-
tistical probability distributions, this is represented as follows: 

𝑃 (𝑌)  =  𝑃 (𝑌 | 𝑋) (1) 

𝑃 (𝑋)  =  𝑃 (𝑋 | 𝑌) (2) 

This is expressed as the probability of 𝑌 happening as the conditional probability of 𝑌 

given 𝑋 as in Equation (1). Conversely, the probability of 𝑋 happening is expressed as the 

conditional probability of 𝑋 given 𝑌 as in Equation (2). Therefore, this explains that the 

probability of 𝑋 happening will not alter the existence of 𝑌, and vice versa. This occurrence 
is referred to as statistical independence.  

 The general notation for independence uses the symbol ⫫. Using this symbol, we can 
state that 𝑋 and 𝑌 are independent in the following way: 𝑋 ⫫  𝑌. The concept of condi-

tional independence is critical in establishing causality variables. We can express that 𝑋 and 

𝑌 are conditionally independent given 𝑍. This is causally represented as: 𝑋 ⫫  𝑌 | 𝑍.  

 Similarly, in terms of probabilities, we can express that: 𝑃 (𝑋, 𝑌 | 𝑍)  =
 𝑃 (𝑋 | 𝑍) 𝑃 (𝑌 | 𝑍).  

The above (X, Y, Z) is jointly factorized to give a product of two simple conditions of 

(𝑋 | 𝑍 and 𝑌 | 𝑍) using the property introduced earlier (𝑃 (𝑋, 𝑌)  =  𝑃 (𝑋) 𝑃 (𝑌)). 

2.4. Causal DAG for Causal Inference 

Causal DAG formalism can map the conditional independencies in statistical expres-
sions in a directed graph. A directed graph is denoted as 𝐺 =  (𝑋, 𝐸), comprises of joint 

distribution 𝑃𝑋  as a factorization of the variables 𝑋 =  {𝑋1; ∶: : ;  𝑋𝑐}  using c corre-

sponding nodes or vertices 𝑣 𝜖 𝑉 and connecting with the directed edges (𝑖;  𝑗) 𝜖 𝐸, where 

(𝑖;  𝑗) represent a directed edge between 𝑣𝑖 and 𝑣𝑗. The two or more nodes and random 

variable (𝑉), where 𝑉 = 𝑋1, 𝑋2 … 𝑋𝑛, and the connecting edges are called (𝐸). If all edges 
are directed without cycles, we refer to them as a class of graphs called DAGs. 

 We can illustrate that a parent 𝑝𝑎𝑗 as a vertex 𝑣𝑖 with child 𝑣𝑗 joined by a directed 

edge 𝑋𝑖 →  𝑋𝑗 such that (𝑖; 𝑗) 𝜖 𝐸 but (𝑗;  𝑖)  ≠  𝐸. The first parents are ancestors of the 
later descendants if there exists a directed path constituting 𝑖𝑘 →  𝑗𝑘 + 1 for all 𝑘 in a se-
ries of vertices in a DAG. Therefore, there exist three relations that can exist in a causal DAG. 

The first is parents who have a common child represented as (𝑖𝑘 ⟶ 𝐶 ⟵ 𝑗𝑘) is also called 

a collider or immorality. The second relation exists called a mediator or chain (𝑖𝑘 ⟶ 𝐶 ⟶
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𝑗𝑘) where a parent node ik produces a child node 𝐶, which in turn produces another child 

𝑗𝑘 where jk now becomes a grand descendant of 𝑖𝑘. Lastly, the third relation exists where a 

node 𝐶, which is a parent, has two descendants 𝑖𝑘 and 𝑗𝑘 (expressed as 𝑖𝑘 ⟵ 𝐶 ⟶ 𝑗𝑘) is 
referred to as a fork or common cause con-founder. Therefore, these three relations (collider, 
chain, and fork) are ways that an observational dataset can be represented in a causal DAG to 
establish the basis for a causal graph and for determining relationships in the data-generating 
process [1], [6]. DAGs are expected to fulfill the Markov property so that the assumed joint 
distribution factorizes according to the repetitive decomposition amenable to Bayesian 
networks[6], as this: 

𝑃(𝑋)  =  ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑖)

𝑑

𝑖

 (3) 

The Markov assumptions based on Bayesian networks in Equation (3) can be used as a 
condition or d-separation of the causal DAG structure. We used the backdoor operation for a 
common cause structure (Fork) in our causal DAG diagram. 

3. Proposed Method 

This study adopted a causal and ML research method that bears relevance to quantitative 
methods in similar studies such as [1], [6], [16]. This method discovers causal knowledge, 
builds the causal DAG structure, validates the causal DAG, and predicts the Patient survival 
rate from the Semi-synthetic dataset from our Causal DAG using the BERT and its medical 
variant models such as Clinical-BERT and Clinical-BERT discharge summary. 

3.2. Dataset Preparations and Partitioning 

This step involves loading the dataset, cleaning the text, selecting the variables of in-
terest, encoding labels, and splitting the data into training, validation, and testing sets. The 
preprocessing steps transform the original dataset of 757805 records and 33 columns into the 
required data for the causal modeling and BERT predictions as follows: 
1. Data cleaning and removing duplicate values and outliers reduced the dataset to 757123 

records and 33 columns. 
2. Data cleaning also involves removing missing values, which reduces the dataset further 

to 755051 records and 33 columns.  
3. Feature engineering: A new variable called Survival rate was created from the existing 

"Patient _Disposition" columns to represent the Patients' Survival rate for causal dis-
covery and modeling from the clinical discharge dataset. The dataset was reduced to 
755051 records and 35 columns.  

4. The causal discovery and modeling of the patient survival rate reduced the columns to 
15000 records and seven columns as sample size. The choice of sample size was predi-
cated by [6], [7], that a small sample size is not a uniquely causal problem since it may lead 
to statistical and algorithmic bias. The dataset change during the preprocessing is shown 
in Table 3. 

Table 3. Changes in dataset size during preprocessing. 

Processing steps Number of records Variables 

Raw dataset 757805 33 

Data Cleaning (Removing duplicates) 757123 33 

Data Cleaning (Removing Missing values) 755051 33 

Feature engineering  755051 35 

Final Causal variables 15000 7 

The preprocessing aimed to obtain the causal variables (15000, 7) that can be used to 
predict the survival rate in the textual clinical dataset. From the causal knowledge variables 
obtained, we divided the causal clinical text dataset into training, validation, and test sets in the 
ratio of 70%, 15%, and 15%, respectively [17], for BERT and its clinical variant prediction as 
in Table 4. 
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Table 4. Clinical dataset partitions for BERT models. 

Models Train sets Validation sets Test sets 

BERT 10500 2250 2250 

Clinical-BERT 10500 2250 2250 

Clinical-BERT discharge summary 10500 2250 2250 

3.3. Proposed Research Process Flow 

The proposed process flow for the study entails the following steps and are depicted 
graphically in Figure 1 below: 
1. Preprocessing the clinical discharge note datasets through data cleaning and grouping 

related terms. 
2. Knowledge encoding is used to extract relevant variables from the clinical dataset that 

are relevant for the task of patient survival mining and for designing the causal DAG 
using the feature engineering and ablation technique to dispose of clinically irrelevant 
variables [18]. 

3. Design of Causal DAG from the Clinical discharge dataset.  
4. Validate the Assumptions encoded in the causal DAG from the Clinical discharge test 

dataset using the CIT criteria. 
5. Test if the causal assumption is established.  
6. Predict the semi-synthetic from the Causal DAG using the BERT Model. 

 

Figure 1. The Process workflow 

3.4. The adopted BERT Models  

We selected the three BERT models for predicting the causal DAG variable selected 
from the clinical discharge text: regular BERT and the two other medical variants of the 

Start Input data 

Process the data 

Identify the causal interest or covariates 

Design the Causal 

Validate the graph 

Validation true? 

Yes 

Predict with the regular 

BERT 

Predict with the 

ClinicalBERT-discharge 

Predict with the ClinicalBERT 

Inject causal reasoning into 

the BERT models 

Evaluate the model 

accuracy & AUC score 

Compare the accuracies 
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DAG & BERT results 
Stop 

No 
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BERT models, such as the Clinical-BERT and the Clinical-BERT discharge summary. This 
study trains the semi-synthetic text from the causal DAG on the regular BERT, which uses a 
large corpus developed for the analysis of general domain text, and on Clinical BERT, which 
uses text from all clinical note types, and Clinical-BERT discharge summary, which uses only 
discharge summary to compare the performances of these three BERT models.  

3.5. Model training architecture and hyper-parameter selection 

The careful selection of the pre-trained BERT architecture and its Clinical variants, such 
as ClinicalBERT and ClinicalBERT-discharge summary, serves as the foundation for better 
fine-tuning and greater adaptation of the model to specific tasks of clinical text. While the size 
of the fine-tuning text dataset plays a secondary role[19]. The architecture of the three 
pre-trained BERT models and their tokenizer adopted for this study are listed below to 
eradicate ambiguity concerning the architecture and version of the BERT model adopted[7]. 
The models adopted in this study is presented in Table 5. 

Table 5. Model architecture and hyper-parameter selection. 

Model Architecture Hyperparameters 

BERT: 

BERT-Base (Un-Cased):  

12-layer, 768-hidden-nodes, 12-attention-heads, 110M  

Bert = AutoModel.from_pretrained('bert-base-uncased') 

Tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') 

Optimizer: AdamW  

Learning rate: 1e-5 

Epoch: 10 

ClinicalBERT: 

Model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") 

Tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/           
Bio_ClinicalBERT") 

ClinicalBERT-discharge: 

Model = AutoModel.from_pretrained("emilyalsentzer/                  
Bio_Discharge_Summary_BERT") 

Tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/           
Bio_Discharge_Summary_BERT") 

3.6. Oversampling to avoid overfitting and underfitting 

We used a batch size of 32 and a maximum sequence length of 25 to pre-train the 
models. Similarly, gradient clipping was used to reduce exploding gradients associated with 
text tokens classification and gradient accumulation to enable splitting sample batches into 
smaller mini-batches (25 sequences of 512 tokens each) to optimize the utilization of GPU 
memory used in the Google Colab platform[20]. During training, the lower binary class (0) 
was oversampled to match the overrepresented (1) class with random state and SMOTE 
function to handle imbalance labels and achieve the balance of all classes under analysis. 
Moreover, we used a random state to implement cross-validation controls to shuffle the data 
before splitting to ensure that the different data values will result in different splits of the data, 
ensuring a robust model across different subsets. 

3.7. Evaluation of the BERT Models 

 The BERT models were evaluated using metrics such as precision, recall, and accuracy 
of the test dataset were calculated. The formula for the evaluation can be seen as below: 
• Precision is the ratio of actual survived patients classified by the model and all the clinical 

text classified by the model as survived. In terms of the true positives (𝑇𝑃) and false 

positives (𝐹𝑃), precision (𝑝) can be formulated as Equation (4). 
• The recall is the ratio of actual survived patients classified by the model and all survived 

patients in the dataset. In terms of the true positives (𝑇𝑃) and false negatives (𝐹𝑁), recall 

(𝑟) can be formulated as Equation (5). 

• F1-Score: A harmonic average of the precision (𝑝) and recall scores (𝑟), defined as 
Equation (6). 

• Accuracy (𝑎𝑐𝑐) is the overall prediction of the target classes; see Equation (7). 
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𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

𝑓1 = 2
𝑝. 𝑟

𝑝 + 𝑟
 (6) 

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

Where 𝑇𝑃 = True positives, 𝑇𝑁 = True negatives, 𝐹𝑃= False positives, 𝐹𝑁 = False neg-
atives. 

In addition, there is also the AUC-ROC metric, which is a probability evaluation metric 
that graphically describes the performance of a binary classifier in two forms: 
• True Positive Rate (TPR), a sensitivity or recall, measures the proportion of actual pos-

itives correctly identified by the model. TPR can be calculated using Equation (5) 
• False Positive Rate (FPR): This evaluates the proportion of actual negatives incorrectly 

identified as positives by the model. FPR is calculated using Equation (8). 

𝐹𝑃𝑅 =    
𝐹𝑃

𝐹𝑃 +  𝑇𝑁
 (8) 

4. Implementation 

This section designs and validates the causal DAG and predicts the patient survival rate 
using the BERT models. The implementation process involves several development tools. 
Google Colab was used for data preprocessing, feature engineering, and experiments with the 
BERT model. The Dagitty package was utilized for designing the Causal DAG ontological 
framework, as shown in Figure 4, and obtaining model coordinates and the CIT criteria as-
sumptions in the dataset. Additionally, R programming was employed to implement the CIT 
criteria validation obtained from the Dagitty package. 

The implementation follows a structured approach to ensure accurate modeling and 
prediction of patient survival rates. The following subsections detail each step of the im-
plementation process, from knowledge discovery to model evaluation. 

4.1 Causal Knowledge Discovery from Domain Knowledge and Feature Engineering 

 The target classes and the variables needed for the causal graph modeling were first 
identified with the aid of the domain knowledge of the clinical dataset through data explora-
tion and feature engineering. The variables labeled Patient_Disposition in the notes/report 
category were found to be valuable in generating another important variable called Surviv-
al_rate.  Regarding explaining clinical text column names, Patien_Disposition defines where 
a patient retires after being discharged from the hospital, as shown in Table 6. 

From Table 6, it was discovered that the Expired label shows the number of patients 
who died after hospital admission. This column was important for identifying and modeling 
the number of patients who survived or died after being admitted to a particular hospital and 
administered some treatment. The label was encoded and separated into binary target labels as 
‘Survived’ or ‘Died’, as Figure 2 illustrates the feature engineering process applied to the Pa-
tient Disposition column. 

The knowledge discovery process produced the target class called the Survival_rate 
variable from the Patient Disposition variable. Thus, after identifying the target variable, the 
study identified the causal variables that could help model the causal relationship. At this 
stage, we discovered unnecessary categories of information in the dataset since they will not 
provide significant insight into the model target. Those data classes, such as Hospital In-
formation, Billing Method, and Cost, were ablated or constrained. This was done in consul-
tations with clinicians and medical domain specialists. The ablation technique and expert 
knowledge were needed to remove some columns that could introduce bias into the model 
[1], [9]. 
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Furthermore, as shown in Table 7, we had left seven variables from the dataset needed 
for further modeling. The knowledge discovered from the clinical text was encoded to make 
an informed decision on the number of people that died or survived in the dataset. Therefore, 
the final variables selected for the model are Age_Group, Gender, APR_MDC_Description, 
Severity_of_Illness_Description, CCSR_Procedure_Description, and Survival_rate. 

Table 6. Patient Disposition Categories. 

Patient Disposition Frequency 

Home or self-care 482999 

Home w/ Home Health Services 116579 

Skilled Nursing Home 64578 

Expired 25703 

Left Against Medical Advice 20946 

Short–term Hospital 12638 

Inpatient Rehabilitation Facility 12413 

Hospice - Home 4791 

Psychiatric Hospital or Unit of Hosp 3921 

Hospice – Medical Facility 3432 

Another Typed Not Listed 3305 

Facility W/ Custodial / Supportive Care 1947 

Court / Law Enforcement  1410 

Hosp Based Medicare Approved Swing Bed 1044 

Medicare Cert Long Term Care Hospital 898 

Cancer Center or Children’s Hospital 632 

Medicaid Cert Nursing Facility 327 

Federal Healthcare Facility 179 

Critical Access Hospital 58 

 

Figure 2. Feature engineering on the Pateint_Disposition column 

Table 7. The final variables selected and their descriptions. 

Variable Description 

Age_Group (AG) The age distribution of the patients 

Gender  Sexual identities of patients 

APR_MDC_Description All patients refined of Major Diagnostic Categories (MDC) 
description 

APR_Severity_of_Illness_Description  All patients refined (APR) the severity of the illness. It groups the 
severity of illness into four. 

CCSR_Procedure_Description  Clinical Classifications Software Refined (CCSR) procedure 
description based on international classification of Diseases 

(ICD) 

APR_Risk_of_Mortality  This groups the disease mortality level into four groups. 

Patient_Disposition or Survival_rate A place or setting where a patient was discharged to stay on the 
day of discharge. 

 
The knowledge discovered from the clinical text dataset consists of [Diseases, Gender, 

Age, severity of the disease, mortality rate, treatment, and the target variable] as shown in 
Table 7. The causal DAG was depicted graphically, as shown in Figure 3. The causal DAG 
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structure can help to understand the specific variables extracted from the dataset that can be 
used to predict the survival rate in the dataset. This DAG structure harnessed the rich on-
tological framework of causal discovery to uncover the nature of relevant variables, rela-
tionships, and insights that can help in clinical decision-making in the dataset used in this 
study [21]. 

 

Figure 3. Patient Survival Rate Prediction Data flow using the Causal DAG Framework 

4.2 Causal DAG Framework Knowledge Encoding and Formulation 

Applying a Causal graph ontological framework can help test the statistical implications 
of the conceptual assumptions encoded in a given Causal diagram, and this can help re-
searchers discover errors in the model, avoid erroneous conclusions based on spurious cor-
relations, and build better models. Therefore, the causal graph model goes through systematic 
scrutiny and validation to ensure the correctness of the conclusions of a causal graph-based 
analysis and its underlying assumptions.  

The causal knowledge of survival rate from the clinical text was encoded into the causal 
graph. We establish a causal assumption for the survival rate in the clinical text as part of the 
causal model to imply the following conditional independences and assumptions as Equation 
(9). 

Diseases ⊥  Survival_rate | Confounders, Treatment (9) 

The symbol “⊥” or “_||_”stands for independent of, and “|” stands for, given or 
conditioned on. 

Therefore, Equation 10 can be interpreted as follows: [Diseases] is independent of 
[Survival_rate] given or conditioned on Confounders and Treatment. Simply put, that a 
person is sick does not equal surviving or dying unless you consider other factors such as 
confounding variables and the treatment administered. Where: 𝐶𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠 =
 {𝐴𝑔𝑒_𝐺𝑟𝑜𝑢𝑝, 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐴𝑃𝑅_𝑅𝑖𝑠𝑘_𝑜𝑓_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦, and 𝐴𝑃𝑅_𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦_𝑜𝑓_𝑖𝑙𝑙𝑛𝑒𝑠𝑠_𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛} 

However, from the Causal DAG in Figure 4, there was a biasing path that was opened by 
the [Confounders] that requires minimal adjustment sets for controlling or conditioning the 
information flow in the graph and for estimating the total effect of Diseases on Survival_rate 
given other variables. Therefore, conditioning or d-separation is necessary for blocking paths 
between the sets of nodes in a causal graph produced by confounders. Therefore, we adjusted 
or intervened on confounders using a backdoor adjustment operation to apply independence. 
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Figure 4. The Causal DAG structure and the adjustment on confounders 

The adjustment concept or d-separation method applied to the causal graph is sufficient 
to identify the mathematical formula for adjusting covariates and estimating the causal impact 

of the intervention by using the do-action formula, i.e. (𝑦|(𝑡)). We perform an intervention 
on the [𝐶𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠 − (𝑦|(𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠))]  as in Figure 4 to block the backdoor 
paths. Therefore, the d-separation on the confounders eliminates the confounding bias 
produced by the following equations, assumptions, or mathematical formulas for testing the 
encoded model using the CIT. This implies: 

Dsss _||_ Srv_ | Gender, Trtm (10) 

Dsss _||_ Srv_ | Ag_G, Trtm (11) 

Dsss _||_ Srv_ | S__I, Trtm (12) 

Dsss _||_ Srv_ | R__M, Trtm (13) 

Furthermore, the identified CIT assumptions above were used alongside the dataset to 
perform the CIT statistical test. The overarching objective of testing the causal diagram or 
knowledge discovered is to confirm or reject the CIT assumptions encoded and identified in 
the Causal graph ontological framework. 

4.3. Causal DAG Model Validation and Results Explanation 

 The causal graph model encoded in Section 4.2 undergoes systematic validation to en-
sure the correctness of the Causal DAG assumptions. Figure 4 illustrates the encoded 
knowledge in the Causal DAG for the clinical discharge dataset's survival rate. The validation 
process verifies whether these assumptions hold using the Conditional Independence Test 
(CIT). The validation requires two key components: (i) the coordinates and CIT criteria de-
rived from the design process in Digitty and (ii) the dataset. The CIT criteria obtained from 
the causal graph structure ontology, as presented in Equation (10), have been validated. Table 
8 presents the results of the CIT test based on the assumptions from Equations (9)–(13), 
which were derived from the Causal Directed Acyclic Graph (DAG) framework in Figure 4. 
The study conditions on confounder variables {Age_Group, Gender, 
APR_Risk_of_Mortality, and APR_Severity_of_Illness_Description} to generate the causal 
assumptions for the CIT test. 

Table 8. Results of the CIT criteria for each instance of confounders using Equations (9) – (13). 

Confounders CIT Criteria LocalTest 95% Confidence Interval 

p-coefficient p.value 2.5% 97.5% 

Gender Dsss _||_ Srv_ | Gndr, Trtm -0.005141721 0.5289365 -0.02114432 0.01086351 

Age_Group Dsss _||_ Srv_ | Ag_G, Trtm -0.08660599 0.08177213 -0.1024691 -0.07069977 

Severity Dsss _||_ Srv_ | S__I, Trtm -0.01353112 0.09751101 -0.02952907 0.002473756 

Mortality Dsss _||_ Srv_ | R__M, Trtm -0.002604563 0.7497719 -0.01860813 0.01340034 

Diseases Treatment Survival rate 

Confounder

s 
do (t) 
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The validation results in Table 8 indicate that the Pearson correlation coefficient esti-
mates for all variables range between -1 and 1, and are close to zero, with a narrow confidence 
interval (CI) at 25% and 95%. Additionally, the p-values exceed the 0.05 threshold, con-
firming statistical independence [22], as indicated in Table 9. 

Table 9. CIT criteria Metrics. 

Metrics Lower bound Upper bound 

Pearson correlation coefficient estimates -1 1 

p-value >0.05 1 

Confidence interval (CI) 25% 97% 

 
The LocalTest results in Table 9 employ four key metrics to assess whether the con-

ceptual assumptions of the causal graph hold: (1) Pearson correlation coefficient estimates, (2) 
p-value, and (3) confidence interval (CI) for the assumed conditional independence in the 
causal graph. The Pearson correlation coefficients for all variables range between -1 and 1, 
suggesting no strong correlation. The p-values (>0.05) indicate statistical significance, sup-
porting the assumed independence in the causal structure. 

The conditional independence assumptions are confirmed if the correlation coefficient is 
close to zero and the p-value is high (>0.05). Conversely, the causal structure may not hold in 
the dataset if the correlation coefficient is high and the p-value is low. The confidence in-
tervals for the correlation coefficient should ideally be close to zero, as wider intervals indicate 
weaker validation of conditional independence assumptions. The Causal DAG ontology is 
validated if the CIT assumptions are confirmed. Otherwise, causal relationships or dataset 
adjustments may be required [1], [22]. 

The results confirm the assumptions proposed in Equations (9)–(13), derived from the 
causal diagram in Figure 4. This validation supports the conceptual Causal DAG model for 
patient survival prediction, ensuring its robustness in the clinical discharge dataset used in this 
study. 

4.4. Using the Causal DAG Knowledge from the Clinical Text Dataset for BERT 
Predictions 

 The knowledge discovered from the clinical discharge text using the Causal DAG var-
iables for the survival rate of patients at the hospitals was mapped into the BERT model.  
The Causal DAG variable was then used as a basis for BERT model predictors’ variable se-
lection in formulating a semi-synthetic dataset for clinical text classification [20], [23], [24]. 
Text classification is a core task in this section, which is amenable to the deep learn-
ing-inspired BERT model. We categorized text into predefined categories or classes. After 
re-arranging the clinical dataset from the discovered causal knowledge based on the predicted 
class of patient survival rate, the dataset consists of two columns: the ‘text’ and the ‘label’. The 
column “text” contains the clinical text obtained from the causal graph ontological frame-
work, and the “label” is a binary variable where 1 means the patient survived, while 0 means 
the patient died. 

 

Figure 5. Patients' survival rate label distribution. 
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Table 10. Random samples of dataset text and labels from the clinical text. 

ID Text Label 

8871 DISEASES AND DISORDERS OF THE MUSCULOSKELETAL SYSTEM 
AND CONNECTIVE TISSUE-F-70 or Older-Moderate-Moderate… 

1 

3048 DISEASES AND DISORDERS OF THE SKIN, SUBCUTANEOUS TISSUE 
AND BREAST-M-30 to 49-Moderate-Minor-SPONTANEOUS V… 

1 

9033 PREGNANCY, CHILDBIRTH AND THE PUERPERIUM-F-30 to 
49-Moderate-Minor-SPONTANEOUS VAGINAL DELIVERY… 

1 

4126 DISEASES AND DISORDERS OF THE MUSCULOSKELETAL SYSTEM 
AND CONNECTIVE TISSUE-M-50 to 69-Minor-Minor-KNEE ART… 

1 

9600 INFECTIOUS AND PARASITIC DISEASES (SYSTEMIC OR UNSPECIFIED 
SITES)-M-70 or Older-Extreme-Extreme-TOE AND MI… 

1 

8393 DISEASES AND DISORDERS OF THE RESPIRATORY SYSTEM-M-70 or 
Older-Extreme-Extreme-ADMINISTRATION OF THERAPEUT… 

1 

9622 DISEASES AND DISORDERS OF THE CIRCULATORY SYSTEM-M-70 or 
Older-Moderate-Major-ADMINISTRATION OF THERAPEUTI… 

1 

1232 DISEASES AND DISORDERS OF THE NERVOUS SYSTEM-F-30 to 
49-Extreme-Extreme-COMPUTERIZED TOMOGRAPHY (CT) WITHO… 

0 

10823 DISEASES AND DISORDERS OF THE KIDNEY AND URINARY 
TRACT-M-70 or Older-Extreme-Major-ADMINISTRATION OF ANTIB… 

0 

7273 DISEASES AND DISORDERS OF THE CIRCULATORY SYSTEM-M-70 or 
Older-Major-Extreme-NON-INVASIVE VENTILATION… 

0 

13887 INFECTIOUS AND PARASITIC DISEASES (SYSTEMIC OR UNSPECIFIED 
SITES)-F-70 or Older-Extreme-Extreme-CHEST TUBE… 

0 

7268 INFECTIOUS AND PARASITIC DISEASES (SYSTEMIC OR UNSPECIFIED 
SITES)-F-50 to 69-Extreme-Extreme-MECHANICAL VE… 

0 

 
The dataset structure shown in Table 10 above comprised the text and their corre-

sponding labels. The clinical text dataset fine-tuned on the BERT models was 15000 instances 
drawn from the entire dataset. The patients’ survival rate prediction dataset contains 14547 
patients who survived, while 453 patients died after undergoing a series of prescribed treat-
ments, see Figure 5. 

4.5. Tokenization of the semi-synthetic Clinical Discharge Dataset 

Before feeding the clinical text data into the BERT models, we first converted it into a 
format that the model can process through a step known as tokenization. We used the 
Hugging Face AutoTokenizer from three BERT model variants to tokenize the text data. 
Example of Tokenization Process: 
• Original Text: DISEASES AND DISORDERS OF THE RESPIRATORY SYS-

TEM-M-70 or Older-Major-Extreme-ISOLATION PROCEDURES 
• Tokenized Output: ['diseases', 'and', 'disorders', 'of', 'the', 'respiratory', 'system', '-', 'm', 

'-', '70', 'or', 'older', '-', 'major', '-', 'extreme', '-', 'isolation', 'procedures'] 
• Token IDs: [7870, 1998, 10840, 1997, 1996, 16464, 2291, 1011, 1049, 1011, 3963, 2030, 

3080, 1011, 2350, 1011, 6034, 1011, 12477, 8853] 
To adapt the text for BERT processing, we included special classification tokens [CLS] 

and [SEP], which help the model differentiate the beginning and end of a sequence. 
• Original text with special tokens: diseases and disorders of the respiratory sys-

tem-m-70 or older-major-extreme-isolation procedures 
• processed input with special tokens: tensor([101, 7870, 1998, 10840, 1997, 1996, 

6091, 2291, 1011, 1042, 1011, 2753, 2000, 6353, 1011, 3576, 1011, 3576, 1011, 12477, 
8853, 102, 0, 0, 0]) 
This tokenized representation ensures that the text is properly structured for input into 

the BERT model, enabling efficient processing and learning from clinical text data. The 
presence of padding tokens (zeros) accounts for fixed-length input requirements in 
BERT-based architectures. 
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4.6. Model Training Performance 

 The variants of the BERT models adopted for this study, such as regular BERT, Clin-
ical-BERT, and the Clinical-BERT discharge summary, were trained on the synthetic clinical 
dataset. The results of the training and visualization are shown below in Figure 6(a) and (b) for 
Regular BERT, Figure 7 (a) and (b) for Clinical-BERT, and Figure 8(a) and (b) for Clini-
cal-BERT discharge summary. 

4.7. Prediction Accuracy and Performance of different BERT models on Clinical Text 
Dataset 

After the models had been trained on the clinical text classification task against the 
training and the validation datasets, the model was tested on the held-out test datasets. The 
accuracy of the three variants of the BERT models using the classification summary function 
is shown below in Table 11. 

 
(a) 

 
(b) 

Figure 6. (a) Training and validation loss values across 10 epochs for the Regular BERT model; (b) 
Line plot showing the trend of training and validation loss during the model training process. 

 
(a) 

 
(b) 

Figure 7. (a) Training and validation loss values across 10 epochs for the Clinical BERT model; (b) 
Line plot showing the trend of training and validation loss during the model training process.  
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(a) 

 
(b) 

Figure 8. (a) Training and validation loss values across 10 epochs for the Clinical 
BERT-discharge-summary model; (b) Line plot showing the trend of training and validation loss 

during the model training process.  

Table 11. Performances of the three BERT models 

Label/ 
Metrics 

Regular BERT model ClincalBERT Model ClinicalBERT-Discharge-Summary 

Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Precision 

0-label 0.39 0.54 0.45 68 0.17 0.60 0.26 68 0.21 0.60 0.31 68 

1-label 0.99 0.97 0.98 2182 0.99 0.91 0.95 2182 0.99 0.93 0.96 2182 

Acc   0.96 2250   0.90 2250   0.92 2250 

Macro avg 0.69 0.76 0.72 2250 0.58 0.76 0.60 2250 0.60 0.77 0.63 2250 

Weighted 
avg 

0.97 0.96 0.96 2250 0.96 0.90 0.92 2250 0.96 0.92 0.94 2250 

 
We used the classification report summary to evaluate the performance of the models as 

shown in Table 11 above. The regular BERT model achieved an accuracy of 96%, the clini-
cal-BERT model achieved a performance of 90%, and the clinical-BERT discharge summary 
achieved an accuracy of 92% accuracy. The precision, recall, and f1-score performances 
between the survival [1] and death [0] labels were comparatively according to the number of 
classes in the test partition. Since the classes were imbalanced in favor of survived class, the 
performances were in that order. The regular BERT had the highest performance of 96%, 
followed by clinical-BERT discharge summary at 92%, while the clinical-BERT achieved the 
lowest accuracy of 90%. In addition, this study also uses the receiver operating characteristic 
curve to determine the probability of true positives and false negatives in predictions. The 
results of the ROC-AUC measurements are presented in Figure 9. 

4.8. Results Discussion of Causal DAG and BERT Predictions 

 The causal DAG provides intuitive knowledge that appeals to the BERT models' human 
understanding and decision-making process [6]. Our Causal DAG structure in Figure 10 
shows that a patient's [treatment] mediates between the diseases and survival rate. However, 
some unobserved variables called [Confounders – Age, Gender, disease severity, and mor-
tality index of the disease] could impact the diseases, the treatment, and the survival rate of the 
patients as in Figure 10. 

This causal relation assumption was tested and validated to provide the basis for variable 
selection for the BERT model in this study [6], [13]. This provides a novel approach [causal 
variables] for variable selection for black-box models such as BERT.  

 Our BERT model built on a causally tuned synthetic text dataset presents the promise of 
constraining the unnecessary text columns that add bias in the training dataset through abla-
tion [25]. This was expressed by [26] in their study on causal structure discovery from elec-
tronic health records, which revealed that the proposed method achieved a higher recall and 
precision than the general-purpose methods. They asserted that the clinical text's causal re-
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lationships help the model adapt to the dataset. The proposed method is more suitable for use 
in clinical decision support than the general-purpose method. 

  
(a) 

 
(b) 

 
(c) 

 

Figure 9. AUC-ROC Curve (a) BERT - AUC Score: 0.7856594058338275; (b) ClinicalBERT - AUC Score: 0.7653689006308299; (c) 
ClinicalBERT-discharge summary - AUC Score: 0.8421240631908127. 

The results of the three variants of BERT Models with such as regular BERT, Clini-
cal-BERT, and the Clinical-BERT-discharge-summary showed that the regular BERT had a 
performance accuracy of 96%, while Clinical-BERT performance was 90%, and Clini-
cal-BERT-Discharge-summary was 92%. The regular BERT model pre-trained on a large and 
varied text domain from the Wikipedia corpus performed better than the two other do-
main-specific models such as Clinical-BERT and the Clinical-BERT-discharge-summary. 
Similar studies such as [15], [27] supported this result and offered that BERT in general, is 
superior to contextual embedding on a variety of tasks, including those in the clinical do-
mains. A study by [15] added that BERT's superior performance is closely tied to its deeper 
and much more training parameters, thus possessing greater predictive power. More im-
portantly, [study by [20] provided another reason for relative performance on the BERT 
model and added that the dataset on which a BERT model has been pre-trained could affect 
performance. Likewise, the Clinical-BERT and Clinical-BERT-discharge-summary used in 
this research were pre-trained MIMICII clinical notes and discharge text respectively while 
the clinical text in this study was extracted from the Statewide Planning and Research Co-
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operative System (SPARCS) clinical discharge dataset. Hence, the regular BERT learned 
better than the two domain models. However, the Clinical-BERT-discharge-summary per-
formed better than the Clinical-BERT model. Similarly, the results from the AUC in Figure 9 
(a), (b), (c) showed that the ClinicalBERT-discharge summary performed better than the 
ClinicalBERT and the regular. ClinicalBERT-discharge summary has an AUC score of 84%, 
while BERT and ClincalBERT have an AUC score of 79% and 77%, respectively. Clincal-
BERT-discharge summary AUC score superior performance was based on the fact that the 
dataset used in this study is a clinical discharge dataset. The Clini-
cal-BERT-discharge-summary maximized the advantage of the domain power inherent in the 
pre-trained model to perform better than the Clinical-BERT. 

 

Figure 10. Causal DAG Explanations. 

5. Conclusion and suggestions for future study 

This study uses feature engineering and domain knowledge to discover patient survival 
knowledge in the clinical text. The causal knowledge encoded into the causal DAG was val-
idated with the use of CIT and found to be substantiated by fulfilling the CIT metrics such as 
P-value, Pearson correlation, and confidence interval. The regular BERT model and its 
clinical variants, such as ClinicalBERT and ClinicalBERT-discharge summary, were used to 
predict the extracted causal knowledge. The accuracy of the BERT model performed better 
than the other two variants. However, the AUC score metric showed that the Clinical-
BERT-discharge summary was superior because of the domain adaptation of the clinical 
discharge text used in this study. This study contributes to knowledge discovery in causal ML, 
where predictions are made on general datasets rather than causal variables, leading to spu-
rious correlation. Therefore, reinforces the deficiency in ML prediction in the clinical domain 
and the widespread assertion that correlation is not causation as practiced in most classical 
ML predictions. Thus, adopting a causal DAG method to select causal variables in ML pre-
diction is important. This method will help to reduce computation costs since the causal 
variables used are constrained or limited to important ones. This will also help explainable 
models from the model input perspectives and reduce the black-box scenarios that doubt the 
predictive power of opaque algorithms such as deep learning-inspired BERT models. 
However, since causal DAG may be flawed by design, this study suggests that other causal 
algorithm methods should be used to select causal variables from this dataset for ML pre-
dictions and improve causal ML development. 

 

Author Contributions: Mr. Omachi Okolo conceptualized the research idea, analyzed the 
data, and drafted the first manuscript; Prof. B.Y Baha fine-tuned the methodology and the 
technicality; while Dr. M.D. Philemon reviewed and edited the manuscript. Prof B.Y Baha 
and Dr. MD Philemon both supervised the study. All authors have read and agreed to the 
published version of the manuscript.  

Confounders 

Treatment 
Survival_rate 

Complicate Complicate 

Complicate 

Determines 
Diseases 

Lead to 



Journal of Future Artificial Intelligence and Technologies 2025 (March), vol. 1, no. 4, Okolo, et al. 472 
 

 

Funding: This research did not receive any external funding. 

Data Availability Statement: The dataset used in this study is publicly available. Here is the 
link: 
https://healthdata.gov/State/Hospital-Inpatient-Discharges-SPARCS-De-Identified/szqf-x
u7c/about_data. 

Acknowledgments: This study acknowledges the role played by healthdata.gov in making 
the dataset publicly available for research. 

Conflicts of Interest: The authors declare no conflict of interest in this study. 

References 

[1] G. T. Ayem, O. Asilkan, and A. Iorliam, “Design and Validation of Structural Causal Model: A Focus on EGRA Dataset,” J. Comput. 
Theor. Appl., vol. 1, no. 2, pp. 86–103, Nov. 2023, doi: 10.33633/jcta.v1i2.9304. 

[2] K. Yu et al., “Causality-based Feature Selection,” ACM Comput. Surv., vol. 53, no. 5, pp. 1–36, Sep. 2021, doi: 10.1145/3409382. 
[3] A. Feder, N. Oved, U. Shalit, and R. Reichart, “CausaLM: Causal Model Explanation Through Counterfactual Language Models,” 

Comput. Linguist., vol. 47, no. 2, pp. 333–386, 2021, doi: 10.1162/coli_a_00404. 
[4] K. A. Keith, D. Jensen, and B. O’Connor, “Text and Causal Inference: A Review of Using Text to Remove Confounding from 

Causal Estimates,” ArXiv. May 01, 2020. [Online]. Available: https://arxiv.org/abs/2005.00649 
[5] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A Survey of Methods for Explaining Black Box 

Models,” ACM Comput. Surv., vol. 51, no. 5, pp. 1–42, Sep. 2019, doi: 10.1145/3236009. 
[6] M. J. Vowels, “Trying to outrun causality with machine learning: Limitations of model explainability techniques for exploratory 

research.,” Psychol. Methods, Sep. 2024, doi: 10.1037/met0000699. 
[7] A. Molak and A. Jaokar, Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, 

PyTorch and more. Packt Publishing, 2023. [Online]. Available: http://ieeexplore.ieee.org/document/10251331 
[8] K. Lyu and others, “Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy,” J. 

Biomed. Inform., vol. 139, p. 104298, 2023, doi: 10.1016/j.jbi.2023.104298. 
[9] M. Piccininni, S. Konigorski, J. L. Rohmann, and T. Kurth, “Directed acyclic graphs and causal thinking in clinical risk prediction 

modeling,” BMC Med. Res. Methodol., vol. 20, no. 1, p. 179, Dec. 2020, doi: 10.1186/s12874-020-01058-z. 
[10] M. Liu, D. R. Bellamy, and A. L. Beam, “DAG-aware Transformer for Causal Effect Estimation,” ArXiv. Oct. 13, 2024. [Online]. 

Available: https://arxiv.org/abs/2410.10044 
[11] J. Zhang, J. Jennings, A. Hilmkil, N. Pawlowski, C. Zhang, and C. Ma, “Towards Causal Foundation Model: on Duality between 

Causal Inference and Attention,” ArXiv. Oct. 01, 2023. [Online]. Available: https://arxiv.org/abs/2310.00809 
[12] J. Medori and C. Fairon, “Machine learning and features selection for semi-automatic ICD-9-CM encoding,” in Proceedings of the 

NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents, 2010, pp. 84–89. [Online]. Available: 
https://aclanthology.org/W10-1113/ 

[13] B. I. Igoche, O. Matthew, P. Bednar, and A. Gegov, “Integrating Structural Causal Model Ontologies with LIME for Fair Machine 
Learning Explanations in Educational Admissions,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 65–85, Jun. 2024, doi: 
10.62411/jcta.10501. 

[14] K. Huang, J. Altosaar, and R. Ranganath, “ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission,” ArXiv. 
Apr. 10, 2019. [Online]. Available: http://arxiv.org/abs/1904.05342 

[15] E. Alsentzer et al., “Publicly available clinical BERT embeddings,” in Proceedings of the 2nd Clinical Natural Language Processing Workshop, 
2019, pp. 72–78. [Online]. Available: https://aclanthology.org/W19-1909/ 

[16] S. Gopalakrishnan, V. Z. Chen, W. Dou, G. Hahn-Powell, S. Nedunuri, and W. Zadrozny, “Text to Causal Knowledge Graph: A 
Framework to Synthesize Knowledge from Unstructured Business Texts into Causal Graphs,” Information, vol. 14, no. 7, p. 367, Jun. 
2023, doi: 10.3390/info14070367. 

[17] S. Khanna, “A Comprehensive Guide to Train-Test-Validation Split in 2024,” Analytics Vidhya, 2024. 
https://www.analyticsvidhya.com/back-channel/download-pdf.php?pid=134366&next= 

[18] R. Pryzant, D. Card, D. Jurafsky, V. Veitch, and D. Sridhar, “Causal Effects of Linguistic Properties,” ArXiv. Oct. 24, 2020. 
[Online]. Available: http://arxiv.org/abs/2010.12919 

[19] LLM, Large Language Models (LLMs) Interview Question. Medium, 2024. [Online]. Available: 
https://masteringllm.medium.com/recent-11-large-language-models-llms-interview-questions- 

[20] A. Turchin, S. Masharsky, and M. Zitnik, “Comparison of BERT implementations for natural language processing of narrative 
medical documents,” Informatics Med. Unlocked, vol. 36, p. 101139, 2023, doi: 10.1016/j.imu.2022.101139. 

[21] H. Alkattan, S. K. Towfek, and M. Y. Shams, “Tapping into Knowledge: Ontological Data Mining Approach for Detecting 
Cardiovascular Disease Risk Causes Among Diabetes Patients,” J. Artif. Intell. Metaheuristics, vol. 4, no. 1, pp. 08–15, 2023, doi: 
10.54216/JAIM.040101. 

[22] A. Ankan, I. M. N. Wortel, and J. Textor, “Testing Graphical Causal Models Using the R Package ‘dagitty,’” Curr. Protoc., vol. 1, no. 
2, Feb. 2021, doi: 10.1002/cpz1.45. 

[23] A. S. Maiya, “CausalNLP: A Practical Toolkit for Causal Inference with Text,” ArXiv. Computer Science - Computation and 
Language, Jun. 15, 2021. [Online]. Available: http://arxiv.org/abs/2106.08043 

[24] V. Veitch, D. Sridhar, and D. M. Blei, “Adapting Text Embeddings for Causal Inference,” in Conference on Uncertainty in Artificial 
Intelligence, 2020, May 2019, pp. 919–928. [Online]. Available: http://arxiv.org/abs/1905.12741 

https://healthdata.gov/State/Hospital-Inpatient-Discharges-SPARCS-De-Identified/szqf-xu7c/about_data
https://healthdata.gov/State/Hospital-Inpatient-Discharges-SPARCS-De-Identified/szqf-xu7c/about_data


Journal of Future Artificial Intelligence and Technologies 2025 (March), vol. 1, no. 4, Okolo, et al. 473 
 

 

[25] S. Sheikholeslami, “Ablation Programming for Machine Learning,” KTH-Royal Institute of Technology, 2019. [Online]. Available: 
https://www.diva-portal.org/smash/get/diva2:1349978/FULLTEXT01.pdf 

[26] X. Shen, S. Ma, P. Vemuri, M. R. Castro, P. J. Caraballo, and G. J. Simon, “A novel method for causal structure discovery from EHR 
data and its application to type-2 diabetes mellitus,” Sci. Rep., vol. 11, no. 1, p. 21025, Oct. 2021, doi: 10.1038/s41598-021-99990-7. 

[27] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based 
Action Recognition,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 1227–1236. doi: 
10.1109/CVPR.2019.00132. 


