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Abstract: Breast cancer is the most prevalent cancer among women worldwide, requiring early and 

accurate diagnosis to reduce mortality. This study proposes a hybrid classification pipeline that inte-

grates Hybrid Statistical Feature Selection (HSFS) with unsupervised LSTM-guided feature extraction 

for breast cancer detection using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Initially, 

20 features were selected using HSFS based on Mutual Information, Chi-square, and Pearson Correla-

tion. To address class imbalance, the training set was balanced using the Synthetic Minority Over-

sampling Technique (SMOTE). Subsequently, an LSTM encoder extracted nonlinear latent features 

from the selected features. A fusion strategy was applied by concatenating the statistical and latent 

features, followed by re-selection of the top 30 features. The final classification was performed using a 

Support Vector Machine (SVM) with an RBF kernel and evaluated using 5-fold cross-validation and a 

held-out test set. The experimental results showed that the proposed method achieved an average 

training accuracy of 98.13%, an F1-score of 98.13%, and an AUC-ROC of 99.55%. On the held-out 

test set, the model reached an accuracy of 99.30%, a precision of 100%, and an F1-score of 99.05%, 

with an AUC-ROC of 0.9973. The proposed pipeline demonstrates improved generalization and in-

terpretability compared with existing methods such as LightGBM-PSO, DHH-GRU, and ensemble 

deep networks. These results highlight the effectiveness of combining statistical selection and LSTM-

based latent feature encoding in a balanced classification framework. 

Keywords: Breast cancer detection; Ensemble feature selection; Feature fusion; Healthcare AI; Im-

balance problem; Interpretable machine learning; Unsupervised LSTM. 

 

1. Introduction 

Recent advances in artificial intelligence (AI) technology have brought about significant 
transformations in the medical world, especially in data-based and imaging-based disease di-
agnosis. AI enables faster and more accurate analysis processes and supports efficient clinical 
decision-making systems, including the detection of various types of cancer based on images 
and numerical data [1]–[4]. This trend strengthens AI’s position as a potential solution to the 
increasing diagnostic workload and limited medical personnel, especially in radiology and on-
cology. 
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One of the main challenges in the field of oncology is breast cancer, which is the type of 
cancer with the highest incidence in women in the world. According to the World Health 
Organization, there are more than 2.3 million new cases and 670,000 deaths from breast can-
cer globally, making it the leading cause of cancer death in women in almost all countries[5]. 
Early and accurate diagnosis is a key strategy to increase the effectiveness of treatment and 
reduce mortality. In this context, various artificial intelligence approaches have been used to 
build decision support systems that can automatically classify cancer diagnosis results[6]–[11]. 

One of the benchmark datasets widely used in breast cancer classification studies is the 
Wisconsin Diagnostic Breast Cancer (WDBC). This dataset consists of 30 numerical features 
representing the statistical characteristics of cell nuclei from the results of fine needle aspira-
tion (FNA) digitization. It has become the evaluation standard in many studies [12]–[14].  
Zhu et al. [15] proposed an integration between SHAP-RF-RFE and LightGBM optimized 
using Particle Swarm Optimization (PSO). It achieved an accuracy of 99.0% and an AUC of 
0.9870 on the testing data, demonstrating the superiority of the interpretability-based feature 
selection. Meanwhile, Natarajan et al. [16] applied the Dynamic Harris Hawks Optimization 
(DHH) approach combined with the gated recurrent unit (GRU) and performed feature en-
gineering based on FFT and PCA. They reported an accuracy of 98.05% and an F1-score of 
98.28% on the WDBC dataset. In another study, Sreehari and Dhinesh Babu [17] developed 
an Aggregated Coefficient Ranking-based Feature Selection (ACRFS) method combining 
Mutual Information (MI), Chi-square (χ²), and Pearson Correlation Coefficient (PCC) for 
feature ranking. They tested it on various models, including a support vector machine (SVM) 
and a random forest (RF), and showed improved accuracy despite using a smaller feature 
subset. A study by Al Reshan et al. [18] proposed the integration of a Deep Neural Network 
(DNN) with a stacking ensemble approach (DNN-SEM) and used an extra tree classifier 
(ETC) for feature selection on four breast cancer datasets, including WDBC. This model 
achieved high accuracy, up to 99.62%, with a very competitive F1-score and MCC, demon-
strating the superiority of deep learning-based ensemble models in breast cancer classification.  

Although these methods show competitive results, each has its limitations. Deep learn-
ing models such as GRU and convolutional neural networks (CNN) can capture data com-
plexity but require intensive training, large data volumes, and are prone to overfitting [19]. 
On the other hand, linear feature selection techniquessometimes can not maintain a rich rep-
resentation of the original features, especially when dealing with nonlinear and highly corre-
lated biological data. Even in the best approaches, such as Zhu et al. [15], the feature weighting 
process relies on supervised learning and the interpretability of ensemble models, but does 
not integrate features from non-linear representations obtained through sequential extraction, 
such as long short-term memory (LSTM). 

In this situation, an approach that combines the strengths of conventional feature selec-
tion and nonlinear latent mapping is needed. Although originally developed for sequential 
data, LSTM has the capacity to represent dependencies between features in the latent space 
without the need for supervised training. Its ability as an unsupervised encoder makes it a 
potential candidate for more comprehensive feature extraction [20], [21], especially when 
combined with statistically based feature selection. In addition to modeling and feature selec-
tion approaches, another common challenge in medical datasets such as WDBC is the imbal-
anced class distribution, where the number of benign samples is often greater than that of 
malignant ones. This imbalance can cause the model to be biased toward the majority class 
[22]. To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE) ap-
proach is used, which synthetically adds new samples to the minority class based on interpo-
lation from nearest neighbors [23], [24]. The use of SMOTE has been shown to be effective 
in improving the class distribution and increasing the sensitivity of the model in various cases 
such as studies [23], [25]–[27]. 

Based on these assumptions, an approach that integrates a combination of feature selec-
tion techniques and LSTM encoders is believed to be able to produce complementary feature 
representations, where the combination of feature selection techniques can filter the most 
statistically relevant features, and LSTM captures the non-linear latent structure of the data. 
This combined representation is then fused into one final feature vector, with the hypothesis 
that the combination of these two sources of information can improve the classification per-
formance. SVM is used as a classifier because of its ability to handle high-dimensional data 
efficiently [28], as well as its stability, which has been proven in previous studies on the 
WDBC dataset. Based on this framework, this study contributes in several important aspects: 
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• Proposing an integration of feature selection techniques that we call HSFS and non-
supervised LSTM encoders as a hybrid approach for feature selection and extraction; 

• Developing a feature fusion mechanism to combine statistical and nonlinear information 
in one representation; 

• Developing an efficient classification pipeline based on the SVM with comprehensive 
metric evaluation; and 

• Comparing the performance of this approach to existing methods on the WDBC bench-
mark dataset. 
This paper is organized into six main sections. Section 2 describes the preliminary chap-

ters, covering the basic concepts and initial approaches, such as HSFS, unsupervised feature 
extraction with LSTM, feature fusion strategies, and related literature reviews. Section 3 ex-
plains the proposed method in detail, from preprocessing, feature selection, and data balanc-
ing with SMOTE to the classification process. Section 4 presents the experimental results, 
including the dataset description, model performance evaluation, and supporting visualiza-
tions. Section 5 compares the proposed method with another recent approach based on the 
same dataset, namely WDBC. Finally, Section 6 concludes the main findings and provides 
further development directions for further studies. 

2. Preliminaries 

2.1. Hybrid Statistical Feature Selection 

Feature selection is an important process in machine learning that aims to select the most 
relevant and informative feature subset from the original data to improve model accuracy, 
reduce computational complexity, and prevent overfitting. Therefore, selecting the right fea-
tures is crucial in building an efficient and accurate classification model[29], [30]. The ensem-
ble feature selection approach is increasingly being used to improve the stability and effec-
tiveness of the selection process. Ensemble feature selection combines the results of several 
selection methods to obtain a more representative and reliable feature subset than a single 
method. Combining feature selection methods has been used in several studies, such as [31]–
[34]. 

 This study adopts previous studies and proposes the Hybrid Statistical Feature Selection 
(HSFS) method. HSFS is a simple but effective customization strategy for feature selection 
by combining three independent statistical criteria: Mutual Information (MI), Chi-Square (χ²), 
and Pearson Correlation Coefficient (PCC). These three methods were selected on the basis 
of their complementary evaluative characteristics: MI can capture non-linear relationships be-
tween features and labels, χ² is suitable for measuring the association of categorical features 
to classes, and PCC effectively identifies linear correlations. This combination aims to provide 
a more comprehensive evaluation of feature relevance while overcoming the limitations of 
each method when used alone. 

Unlike some ensemble approaches that apply explicit weighting or parameter optimiza-
tion, this method only uses the arithmetic mean of the ranking positions obtained from each 
metric. This approach is chosen to avoid one metric’s dominance and maintain the neutrality 
of aggregation when the scales between metrics are not homogeneous. If direct score sum-
mation is used,  the difference in numerical scales between metrics can cause significant bias 
in feature selection. In contrast, aggregation based on relative ranking is considered more 
stable, interpretable, and can be consistently reproduced, especially when applied to complex 
biomedical data with high correlations between features. 

Mutual Information (MI) measures the level of dependence between a feature 𝑋 and a 

label 𝑌, including nonlinear relationships. The MI formula is defined in  (1). 

𝑀𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝑌

log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋

 (1) 

Chi-Square (χ²) evaluates the strength of association between a feature and the target 
class based on the expected and observed frequencies, which is described in Equation (2). 
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𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑘

𝑖=1

 (2) 

On the other hand, PCC measures the strength and direction of the linear relationship 
between the features and target labels. The absolute value of PCC is used to avoid directional 
bias, which is shown in Equation (3). 

𝑟𝑋,𝑌 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 (3) 

After the scores of each metric are calculated, each feature 𝑓𝑖 is assigned a ranking po-

sition 𝑅𝑀𝐼(𝑓𝑖), 𝑅𝜒2(𝑓𝑖), 𝑅𝑃𝐶𝐶(𝑓𝑖). The final ranking is calculated by the arithmetic mean of 

the three, as Equation (4). 

𝑅𝐻𝑆𝐹𝑆(𝑓𝑖) =
𝑅𝑀𝐼(𝑓𝑖) + 𝑅𝜒2(𝑓𝑖) + 𝑅𝑃𝐶𝐶(𝑓𝑖)

3
 (4) 

The feature with the lowest average rank value is considered the most relevant and is 
selected for further classification. With this approach, HSFS can balance the sensitivity be-
tween metrics and provide more stable and reproducible feature selection results without the 
complexity of additional parameter tuning. 

2.2. Unsupervised LSTM-Guided Feature Extraction 

Long Short-Term Memory (LSTM) is a neural network architecture that is classically 
designed to handle sequential data and can retain long-term information through its internal 
memory mechanism [35], [36]. Although commonly used in domains such as natural language 
processing and time signals, the internal structure of LSTM allows its application to model 
dependencies between features in tabular data, including biomedical data, without labels or 
supervised training [37]. 

This study uses LSTM as an unsupervised encoder to extract denser dimensional latent 
feature representations. The goal is to map high-dimensional inputs into a more structured 
and informative nonlinear latent space to complement the statistically selected features. Un-
like conventional deep learning training, this extraction process is carried out only through a 
forward pass, without an explicit training stage, without a loss function, and without a back-
propagation process. 

Technically, the input feature selection results using HSFS are in the form of a matrix 

𝑋 ∈ ℝ𝑛×𝑑, transformed into a three-dimensional form 𝑋′ ∈ ℝ𝑛×1×𝑑 to be compatible with 
the LSTM architecture. The encoding process can be formulated in Equation (5) and (6). 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑋′𝑡), (5) 

𝑧 = 𝑅𝑒𝐿𝑈(𝑊. ℎ𝑡 + 𝑏) (6) 

Where ℎ𝑡 is the hidden output of LSTM, 𝑊 is the weight matrix of the dense layer, and is 

the bias vector. The activation result 𝑧 is the feature vector of the dense layer activation result 
as the final representation.  

The advantage of this approach lies in its ability to capture nonlinear latent structures 
that may not be reached by conventional statistical selection methods such as MI, χ², or PCC. 
In complex breast cancer data, features may interact in nontrivial patterns not sufficiently 
explained by linear correlation or categorical association alone.  

2.3. Feature Fusion Strategy 

The fusion of various feature sources into a single unified representation is an approach 
widely used in developing modern deep learning models, both for tabular, image, and multi-
modal data [38]–[40]. This strategy combines the representational power of various features, 
such as statistical, spatial, and temporal features. Thus, the classification model can obtain 
richer and complementary information [41], [42]. In the context of biomedical data, feature 
fusion is also a promising approach to combine domain knowledge (through explicit features) 
with latent representations (through feature embedding).). 
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This study uses a strategy to combine the results ofthe statisticall feature selection based 
on HSFS and the results of nonlinear feature extraction from the LSTM encoder. The goal is 
to form a combined feature vector that reflects the statistical relevance to the label and cap-
tures the latent dependencies between features not covered by conventional statistical meth-
ods. 

Technically, the HSFS selected feature is denoted as 𝑋𝐻𝑆𝐹𝑆 ∈ ℝ𝑛×𝑑1 , and the latent 

representation from the LSTM encoder as 𝑍𝐿𝑆𝑇𝑀 ∈ ℝ𝑛×𝑑2. These two matrices are com-
bined horizontally in concatenation to produce a combined feature vector (see Equation (7)). 

𝑋𝑓𝑢𝑠𝑖𝑜𝑛 = [𝑋𝐻𝑆𝐹𝑆‖ 𝑍𝐿𝑆𝑇𝑀] ∈ ℝ𝑛×(𝑑1+𝑑2) (7) 

This fusion is performed before the classification stage, assuming that this combined 
representation has a betterbetter discriminative capacity. To maintain classification efficiency 

and prevent redundancy, the HSFS-based feature selection process is reapplied to 𝑋𝑓𝑢𝑠𝑖𝑜𝑛, 
so that only the most informative combined features are used in the final classification stage. 
This fusion strategy not only strengthens the data representation but also maintains the inter-
pretability and efficiency of the model and supports the integration of statistical and repre-
sentation learning approaches in a single unified classification pipeline. 

2.4. Related works 

Several approaches for automatic breast cancer detection using the Wisconsin dataset 
have been developed. Oyelade et al. [12] introduced the ST-ONCODIAG system, which 
combines an ontology-based semantic reasoning model with a Select-and-Test approach. This 
system demonstrated its effectiveness in extracting and representing medical knowledge 
through domain-based logical rule inference. On the other hand, Alshayeji et al. [13] evaluated 
the performance of artificial neural networks (ANNs) without feature selection. They found 
that a simple ANN model was effective for breast cancer classification, emphasizing that 
complex structures are not always necessary for optimal performance. In addition, Raza et al. 
[14] proposed an explainable artificial intelligence (XAI) approach based on ensemble learn-
ing. They explored the combination of bagging, boosting, and stacking techniques with clas-
sification algorithms such as RF, XGBoost, and LightGBM.  

Al Reshan et al.[18] developed a Deep Neural Network-based Stacking Ensemble Model 
(DNN-SEM) that combines deep learning techniques with an ensemble approach for breast 
cancer classification. This model combines two level-1 models (DBN and ANN) with four 
level-0 models (XGBoost, Logistic Regression, RF, and SVM) and applies feature selection 
using an Extra Tree Classifier (ETC). Although their study tested four different datasets, one 
of which was WDBC. The results showed that the deep learning-based ensemble approach 
can significantly improve the classification accuracy and offer better interpretability than con-
ventional methods.  

In addition, Sreehari and Babu [17] proposed the Aggregated Coefficient Ranking-based 
Feature Selection (ACRFS) method, which is a feature selection strategy based on the aggre-
gate ranking of three problem solvers: Mutual Information (MI), Pearson Correlation Coef-
ficient (PCC), and Chi-square. This study used the WDBC dataset along with three other 
datasets. ACRFS aims to identify important features more stably and efficiently by combining 
the advantages of the three selection techniques. Experimental results show that this approach 
significantly improves the accuracy and efficiency of ML models such as RF, KNN, and SGD. 
Specifically, the SGD model experienced an accuracy improvement of up to 19%, with sub-
stantial improvements in the F1-score and MCC after applying ACRFS, while the Decision 
Tree method showed a performance degradation. 

Zhu et al. [15] proposed the SHAP-RF-RFE algorithm, which integrates Shapley values 
(SHAP) in a RF-based Recursive Feature Elimination (RFE) framework. The best classifica-
tion model used was LightGBM, which was combined with Particle Swarm Optimization 
(PSO) for hyperparameter optimization. As a result, the accuracy reached 99.0%, with a pre-
cision of 100%, a recall of 97.4%, an F1-score of 98.68%, and an AUC of 0.9870. In addition, 
26 selected features were determined as the most relevant features, with radius_worst, ar-
ea_worst, and perimeter_worst being the most impactful features. 

In addition, Alhassan et al. [16] proposed a GRU-based deep learning approach that is 
intelligently optimized using the Dynamic Harris Hawks Optimization (DHHO) metaheuris-
tic algorithm. Instead of relying on classical feature selection, they directly tune the GRU 



Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Setiadi, et al. 541 
 

 

parameters through an intelligent search based on exploration and exploitation. The results 
show that the dynamically optimized GRU achieves higher classification accuracy than the 
baseline GRU and other ML methods.  

However, most previous approaches still have limitations in integrating statistical-based 
feature selection and nonlinear feature extraction from deep learning models, which can com-
plement each other to improve generalization. In addition, only a few studies have combined 
aggregation-based feature selection methods with latent feature extraction using unsupervised 
deep learning. They are then combined in the final feature selection stage before classification. 
Therefore, this study proposes a hybrid approach based on HSFS-LSTM fusion that more 
efficiently represents important features while maintaining a high discriminative ability for 
breast cancer classification. 

3. Proposed Method 

The proposed method is a hybrid approach that combines statistical feature selection 
(HSFS) with nonlinear feature extraction using unsupervised LSTM, followed by feature fu-
sion and classification using SVM. The process starts with data preprocessing using Min-Max 
normalization, then HSFS is applied, which calculates MI, χ², and PCC scores, then sorts the 
features based on the average of the three ranks. 

 

Figure 1. Proposed method illustration flow. 

Next, the top 20 features are extracted, and the data are trained using SMOTE to address 
class imbalance. An LSTM encoder is used for the unsupervised extraction of latent features 
from the numerical data, and the features are fused with the original features to form a com-
bined representation. Then, the feature selection process is repeated on the fused data using 
the HSFS method to select the top 30 features. Finally, the SVM classification model was 
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Evaluation of 
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Evaluation of 

the test data 
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LSTM features) 
Fusion train data Fusion test data 

LSTM feature extraction     
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trained and evaluated using 5-fold stratified cross-validation and testing on the testing data to 
measure accuracy, precision, recall, F1, specificity, confusion matrix, Kappa, and MCC. 

Table 1. Details of the proposed step-by-step. 

Step Description Configuration/Function 

Preprocessing 
The dataset was loaded and normalized using 
MinMaxScaler. The diagnosis label is encoded 

in numerical format. 

MinMaxScaler(),  

LabelEncoder() 

Feature Selection 
(HSFS) 

Feature selection is based on the average  
ranking of the HSFS. 

mutual_info_classif,  

chi2,  

pearsonr,  

select the top 20 features 

Splitting and    
balancing 

Data are split into training and testing sets with 
a 75:25 ratio. SMOTE is applied to balance the 

class distribution. 

train_test_split(test_size=0.25, 
stratify=y),          

SMOTE(random_state=42) 

LSTM feature   
extraction 

An unsupervised LSTM encoder extracts latent 
features from a numerical input with a 1×20 

dimension. 

LSTM(units=32), 
Dense(units=16,  

activation='relu') 

Feature Fusion 
The selected features from HSFS and latent 
features from LSTM are concatenated into a 

unified feature vector. 
np.concatenate(axis=1) 

Feature         
Re-selection 

The selected features from the HSFS and latent 
features from the LSTM are concatenated into 

a unified feature vector. 
HSFS to get top 30 features 

SVM Classification 
An SVM model was trained using 5-fold  

Stratified Cross-Validation and evaluated on 
the test set. 

SVC(kernel='rbf',           
probability=True,             
random_state=42),          

StratifiedKFold(n_splits=5) 

Evaluation 
Model performance was evaluated using accu-
racy, precision, recall, F1-score, Kappa, MCC, 
AUC-ROC, confusion matrix, and specificity. 

accuracy_score, precision_score, 
recall_score, f1_score, 

roc_auc_score,               
cohen_kappa_score,           
matthews_corrcoef,        

ConfusionMatrixDisplay 

4. Results and Discussion 

4.1. Dataset Description 

This study used the Wisconsin Diagnostic Breast Cancer (WDBC) dataset, accessed at 
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic. The dataset 
contains digitized results of microscopic images from fine-needle aspiration (FNA) of breast 
cancer, with a total of 569 samples and 32 columns, consisting of 1 ID column, 1 diagnosis 
column (target: M = Malignant, B = Benign), and 30 numerical feature columns. 

4.1.1 Feature Types and Descriptions 

The features used in this dataset can be categorized into three numerical groups based 
on the calculation phase: 

• Mean features (_mean) – Measures the average value of morphology-related properties 
such as radius_mean, texture_mean, perimeter_mean, and area_mean. 

• Standard deviation features (_se) – Measures each feature's error or standard deviation 
across measurements. 

• Worst value features (_worst) – Maximum value recorded during a measurement for 
each feature. 

4.1.2 Diagnosis 

The diagnosis label has been numerically encoded, with 1 for Malignant and 0 for Be-
nign. The proportion of malignant cases was 37.3%, and the proportion of benign cases was 

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
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62.7%. Out of the 569 samples in the WDBC dataset, this corresponds to 212 malignant and 
357 benign cases. This class distribution indicates a moderate imbalance, potentially affecting 
model training and performance if not adequately addressed.  

4.1.3 Feature Correlation and Heatmap Visualization 

Correlation analysis is important in understanding the relationship between dataset fea-
tures and breast cancer diagnosis. In this study, the Pearson correlation coefficient was used, 
which results in values ranging from -1 to 1, with the interpretation as follows: values ap-
proaching 1 indicate a strong positive correlation, values near -1 indicate a strong negative 
correlation, and values around 0 indicate no linear correlation. Figure 2 shows the heatmap 
of the correlations among all features in the WDBC dataset. Red indicates a strong positive 
correlation between features, while blue indicates a weak or negative correlation.  

 

Figure 2. Correlation Heatmap of the WDBC Features 

Some key findings from the heatmap visualization: First, the diagnosis variable highly 
correlates with features like radius_mean, perimeter_mean, area_mean, concavity_mean, con-
cave_points_mean, and compactness_mean. This indicates that higher values in these fea-
tures tend to correlate with the malignant class. Second, features from the "_worst" group, 
such as radius_worst, perimeter_worst, and area_worst, also showed a strong correlation, re-
flecting the structural consistency among the morphology-related features. 

Meanwhile, the "_se" group (standard error), such as texture_se, smoothness_se, and 
symmetry_se, tended to show lower correlation with diagnosis and among themselves, indi-
cating high variability. These findings support using an HSFS feature selection method since 
highly correlated features may carry redundant information. Therefore, identifying features 
that are strongly correlated with the label but not with each other is crucial to maintaining 
model efficiency. 
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4.2. Preprocessing and HSFS Feature Selection 

The dataset obtained from the UCI Wisconsin Breast Cancer Diagnostic Repository un-
derwent several preprocessing steps. First, the categorical target variable diagnosis was en-
coded into binary labels (0 for benign, 1 for malignant) using the LabelEncoder. All numeric 
features were normalized into the range [0, 1] using MinMaxScaler to ensure uniform scaling 
across dimensions and to optimize model convergence. Next, HSFS was performed using 
three statistical criteria. Each feature was ranked individually based on each criterion, and an 
aggregate rank was calculated by averaging the ranks across all three metrics. The top 20 
features with the highest aggregate scores were selected for further analysis and are presented 
in Table 2. 

Table 2. Top 20 initial HSFS features. 

Feature MI Chi2 PCC Aggregate 

symmetry_worst 0.094862 5.560093 0.416294 19.333333 

texture_mean 0.094736 6.394071 0.415185 19 

smoothness_worst 0.103943 5.675733 0.421465 18.333333 

concave_points_se 0.126605 5.781996 0.408042 18 

texture_worst 0.116552 8.741628 0.456903 16.333333 

perimeter_se 0.272321 16.044344 0.556141 13.666667 

radius_se 0.248513 17.324128 0.567134 13.333333 

compactness_mean 0.211762 20.353176 0.596534 12.666667 

area_se 0.341687 19.676975 0.548236 12.666667 

compactness_worst 0.225653 20.992541 0.590998 12.333333 

concavity_worst 0.314751 31.563031 0.65961 9.333333 

radius_mean 0.366222 24.897293 0.730029 8.333333 

area_mean 0.360925 29.328594 0.708984 8.333333 

perimeter_mean 0.404168 26.528902 0.742636 6.666667 

concavity_mean 0.37473 46.186395 0.69636 6.333333 

radius_worst 0.453728 34.124937 0.776454 4.333333 

area_worst 0.465511 35.043882 0.733825 4 

concave_points_mean 0.439231 52.405743 0.776614 2.666667 

perimeter_worst 0.47833 34.438091 0.782914 2.666667 

concave_points_worst 0.436537 46.341648 0.793566 2.666667 

4.3. Splitting and Balancing 

After feature selection of the top 20 features using the HSFS method, the data were split 
into training and testing sets with a 75:25 ratio, using the stratify parameter to maintain a 
balanced class proportion between the training and testing data. However, the training data 
still showed a class imbalance, with 267 benign samples (0) and only 159 malignant samples 
(1). To address this issue, the SMOTE method was applied to generate synthetic data for the 
minority class through interpolation between the nearest neighbors. After oversampling with 
SMOTE, the number of samples in both classes became balanced, each with 267 samples. 
This process helps improve the classification model performance by avoiding bias toward the 
majority class. Figure 3 illustrates the class distribution before and after SMOTE balancing. 

4.4 LSTM Feature Extraction, Feature Fusion, and Re-selection 

After the initial feature selection stage, the process continues with feature extraction 
using LSTM in an unsupervised encoder architecture. Although the dataset is tabular, LSTM 
is designed to capture temporal patterns from the data. The features extracted by LSTM are 
then fused with the 20 selected features using HSFS. This process results in a new high-
dimensional representation that combines the descriptive power of the classical features and 
the latent representation from the LSTM. Subsequently, a re-selection of features is per-
formed on the fused feature set using the HSFS method again. From this second selection 
stage, the top 30 features with the highest aggregate scores were selected and used as the main 
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input for classification. Table 3 presents the list of selected top features based on aggregate 
scores before and after the fusion process. 

 

Figure 3. Dataset distribution before and after SMOTE. 

Table 3. Top 30 features after the fusion process. 

Feature MI Chi2 PCC Aggregate 

perimeter_se 0.294321 14.038611 0.542817 27 

perimeter_se_lstm 0.294695 14.038611 0.542817 26.666667 

radius_se_lstm 0.260151 15.475315 0.557076 26.333333 

radius_se 0.261399 15.475315 0.557076 26 

compactness_worst_lstm 0.222018 17.359451 0.564583 25.666667 

compactness_worst 0.22258 17.359451 0.564583 25.333333 

area_se_lstm 0.374756 16.57068 0.534224 25 

area_se 0.375932 16.57068 0.534224 24.666667 

compactness_mean_lstm 0.245307 18.713144 0.590653 23.666667 

compactness_mean 0.246626 18.713144 0.590653 23.333333 

concavity_worst_lstm 0.339845 26.073655 0.645003 19 

concavity_worst 0.340001 26.073655 0.645003 18.666667 

area_mean_lstm 0.404231 27.500479 0.688486 15 

radius_mean 0.415331 24.041247 0.724212 15 

radius_mean_lstm 0.415662 24.041247 0.724212 14.666667 

area_mean 0.404307 27.500479 0.688486 14.666667 

concavity_mean_lstm 0.391498 38.455948 0.666591 13.666667 

concavity_mean 0.392801 38.455948 0.666591 13.333333 

perimeter_mean_lstm 0.422419 25.366642 0.73446 13 

perimeter_mean 0.424167 25.366642 0.73446 12.666667 

area_worst 0.499705 32.402183 0.713863 9.666667 

area_worst_lstm 0.500547 32.402183 0.713863 9.333333 

radius_worst_lstm 0.497292 32.647572 0.769044 6.333333 

radius_worst 0.499031 32.647572 0.769044 6 

concave_points_mean 0.466715 46.603761 0.755062 5.5 

concave_points_mean_lstm 0.466715 46.603761 0.755062 5.5 

perimeter_worst 0.50817 32.618952 0.772561 5 

concave_points_worst 0.450813 41.388151 0.789057 5 

perimeter_worst_lstm 0.50867 32.618952 0.772561 4.666667 

concave_points_worst_lstm 0.451875 41.388151 0.789057 4.666667 
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It should be noted that there are changes in the MI, χ², PCC, and aggregate scores for 
several features that reappear in the re-selection process. For example, the perimeter_se fea-
ture has an aggregate score of 19.33 in the initial selection but increases to 27.00 in the re-
selection stage (see Table 3). This change is due to the differences in the evaluation context. 
The initial selection was performed only on the classical features, while the re-selection was 
performed on a combination of the classical and LSTM features. Because the MI, χ², and 
PCC metrics are relative to the feature set used, the order and weight of each feature may 
change in the context of feature fusion. 

4.5. SVM Classification and Evaluation 

After the feature extraction and re-selection process on the fused classical and LSTM 
features, the classification model was developed using SVM with an RBF kernel. To compre-
hensively evaluate model performance and prevent overfitting, a 5-fold cross-validation was 
conducted on the training data obtained from the SMOTE-balanced data, and a final evalua-
tion was performed on a held-out test set that had never been seen during training. 

The SVM performance results during the 5-fold cross-validation on the training data are 
presented in Table 4. The average accuracy reached 98.13%, with a precision of 98.53%, recall 
of 97.77%, F1-score of 98.13%, and AUC-ROC of 99.55%. The high Kappa and MCC scores 
indicate that the model accurately and consistently handles the minority class after the bal-
ancing process. The specificity reached 98.50%, indicating that the model effectively recog-
nizes benign samples. 

Table 4. Evaluation results of the proposed method. 

Metrics 
5-Fold Cross-Validation (Training) Held-Out 

Test Set Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Accuracy 0.9906   0.9813 0.9720 0.9626 1.0000 0.9930 

Precision 1.0000 0.9636 1.0000 0.9630 1.0000 1.0000 

Recall 0.9811 1.0000 0.9444 0.9630 1.0000 0.9811 

Specificity 1.0000 0.9630 1.0000 0.9623 1.0000 1.0000 

F1 Score 0.9905 0.9815 0.9714 0.9630 1.0000 0.9905 

Kappa Score 0.9813 0.9626 0.9439 0.9252 1.0000 0.9850 

MCC 0.9815 0.9633 0.9454 0.9252 1.0000 0.9851 

AUC-ROC 0.9993 0.9996 0.9832 0.9951 1.0000 0.9973 

 

Figure 4. ROC curve results of the held-out test set. 
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Figure 5. Confusion matrix of the held-out test set. 

The held-out test set comprising 25% of the original dataset was evaluated to measure 
the model’s generalization ability on unseen data. The test results showed an accuracy of 
99.30%, precision of 100%, recall of 98.11%, and F1-score of 99.05%. The AUC value 
reached 0.9973, indicating an almost perfect separation between the benign and malignant 
cases. Specificity reached 100%, meaning no benign sample was misclassified. The confusion 
matrix in Figure 4 and the ROC curve in Figure 5 further support these findings.  

The ROC curve in Figure 4 shows an AUC-ROC of 0.9973, which is close to perfect. 
AUC is an important metric because it reflects the model's ability to distinguish between pos-
itive and negative classes at various decision thresholds. The closer the value is to 1.0, the 
better the model's discriminatory performance. In addition, the confusion matrix in Figure 5 
confirms that there was only one misclassification out of 143 samples, and there were no false 
positives. Specificity reached 100%, meaning no noncancer cases were misclassified as cancer, 
which is important to avoid overdiagnosis. Overall, combining LSTM-based feature extrac-
tion, fusion with classical features, and HSFS-based feature selection significantly enhanced 
the breast cancer classification performance on both the training data and the held-out test 
set. 

5. Comparison 

To evaluate the effectiveness of the proposed model, we conducted a comparative anal-
ysis against four recent studies that also used the Wisconsin Diagnostic Breast Cancer 
(WDBC) dataset. The comparison is focused on the held-out test set performance, as it pro-
vides a more realistic indication of the model’s generalization ability. Table 5 summarizes the 
comparison of the key metrics across the models. 

Based on Table 5, the proposed HSFS-LSTM-SVM approach outperforms the other 
models across most evaluation metrics on the held-out test set. Notably, it achieved the high-
est accuracy (99.30%), precision (100%), and specificity (100%), indicating superior generali-
zation and low false positive rates—critical in medical diagnosis. Compared to LightGBM-
PSO [15], which also attained high performance, our model improved the AUC-ROC by over 
1%, demonstrating stronger class separation. Similarly, DHH-GRU [16] achieved slightly 
lower accuracy (98.05%) and F1-score (98.28%) than our method. Although SEM-DBN and 
SEM-ANN [18] leverage deep learning ensembles, their slightly lower metrics and lack of 
specificity reporting make them less robust. Importantly, our model maintains high perfor-
mance without requiring complex stacking architectures or supervised deep training. The in-
tegration of SMOTE also contributes significantly by addressing class imbalance, which is 
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often neglected in prior works. Our method offers a practical interpretable and effective so-
lution for breast cancer classification. 

Table 5. Evaluation results of the proposed method. 

Metrics 
LightGBM-

PSO [15] 
DHH-GRU 

[16] 
ACRFS-RF 

[17] 
SEM-DBN 

[18] 
SEM-ANN 

[18] 
HSFS-LSTM-
SVM (Ours) 

Accuracy 0.9900 0.9805 0.9790 0.9872 0.9852 0.9930 

Precision 1.0000 0.9809 0.9763 0.9880 0.9855 1.0000 

Recall 0.9740 0.9815 0.9795 0.9802 0.9797 0.9811 

Specificity - - - 0.9990 0.9890 1.0000 

F1 Score 0.9868 0.9828 0.9779 0.9900 0.9880 0.9905 

Kappa Score - - 0.9558 - - 0.9850 

MCC - - - 0.9880 0.9860 0.9851 

AUC-ROC 0.9870 - 0.9559 - - 0.9973 

6. Conclusions 

This study presented a hybrid approach combining HSFS and unsupervised LSTM-
guided feature extraction to improve breast cancer classification using the WDBC dataset. 
The model achieved a high discriminative capability by fusing statistically selected features 
and latent representations and re-applying feature selection on the fused space. Using 
SMOTE during training successfully mitigated the class imbalance, enhancing the recall and 
F1-score. The final SVM classification with the RBF kernel achieved 99.30% accuracy and 
perfect precision (100%) on a held-out test set. Comparative analysis with state-of-the-art 
models demonstrates our method’s superior generalization and balance. The study contrib-
utes a lightweight yet effective framework that avoids complex training while offering inter-
pretability and high performance. Future work may involve extending this hybrid strategy to 
multiclass or multimodal medical datasets and testing alternative fusion or dimensionality re-
duction strategies to further improve efficiency and robustness. 
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