

Journal of Computing Theories and Applications ISSN:3024-9104

DOI : 10.62411/jcta.12640 publikasi.dinus.ac.id/index.php/jcta/

Research Article

An Empirical Analysis of Injection Attack Vectors and
Mitigation Strategies in Redis NoSQL Database

Muhammad Nazeer Musa 1,* and Martins Ekata Irhebhude 2

1 Department of Cyber Security, Nigerian Defence Academy, Kaduna, PMB 2109, Nigeria;
e-mail : muhammadmusa2502@nda.edu.ng

2 Department of Computer Science, Nigerian Defence Academy, Kaduna, PMB 2109 Nigeria;
e-mail : mirhebhude@nda.edu.ng

* Corresponding Author : Muhammad Nazeer Musa

Abstract: The contemporary landscape of data management, marked by an unprecedented scale and

velocity of data, has spurred the widespread adoption of NoSQL databases, prioritizing scalability and

performance over traditional relational constraints. While offering significant flexibility, this paradigm

shift introduces complex cybersecurity challenges, notably query injection vulnerabilities, which are

consistently ranked among the top web application security risks. Redis, a leading in-memory key-value

store powering critical infrastructure globally, presents a unique security profile due to its architectural

design and features like Lua scripting. Despite its prevalence, a comprehensive academic evaluation of

Redis injection attack vectors remains understudied. This study addresses this gap by systematically

evaluating command and Lua script injection vulnerabilities in Redis version 7.4.1 across controlled

configurations: default, password-protected, and ACL-secured environments. We quantify vulnerabil-

ity risk and empirically validate mitigation strategies by employing a Dockerized testing framework,

Python-driven exploit simulations, and CVSS v3.1 scoring. Our findings reveal critical weaknesses in

default and permissively configured environments and demonstrate that restrictive Access Control

Lists (ACLs), adhering to the principle of least privilege, provide complete mitigation against the spe-

cific injection vectors evaluated in our controlled experimental setup. We propose a Redis-specific

threat taxonomy and provide empirically validated recommendations for securing Redis deployments,

emphasizing layered security controls and proper ACL implementation. This research contributes the

first systematic evaluation of modern Redis injection vulnerabilities and highlights the critical im-

portance of security-conscious configurations to protect vital data infrastructure.

Keywords: Access Control Lists; Command Injection; Database Security; Lua Script Injection;

NoSQL Injection; Redis; Vulnerability Assessment.

1. Introduction

The contemporary landscape of data management has undergone a transformative shift,
characterized by unprecedented scale, volume, and frequency of data collection and pro-
cessing. This technological evolution has catalyzed the emergence of NoSQL databases,
which strategically relax traditional transactional constraints to optimize horizontal scalability
and database [1], [2]. Unlike traditional relational databases, NoSQL technologies encompass
diverse data models, including key-value stores, columnar databases, document databases,
and graph-oriented databases, each offering specialized query languages and architectural ca-
pabilities [3]. While this technological diversification enables unprecedented computational
flexibility, it simultaneously introduces complex cybersecurity challenges, particularly con-
cerning query injection vulnerabilities [4], [5]. Injection represents a sophisticated class of
security attacks wherein maliciously crafted commands are surreptitiously introduced and ex-
ecuted within database systems [5]. The critical nature of these vulnerabilities is underscored
by the OWASP Top 10 Web Application Security Risks, which consistently ranks injection
attacks among the top 3 web application security concerns [6], [7].

Received: April, 22nd 2025

Revised: May, 12th 2025

Accepted: May, 16th 2025

Published: May, 18th 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) licenses

(https://creativecommons.org/licen

ses/by/4.0/)

https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
mailto:muhammadmusa2502@nda.edu.ng
mailto:mirhebhude@nda.edu.ng
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 554

Among NoSQL database technologies, key-value stores represent a particularly intri-
guing architectural paradigm. These databases store data as key-value pairs primarily in
memory, offering rapid, secure, and cost-effective information access with high availability
and durability [8]–[10]. Redis is a highly mature and widely adopted key-value database, cor-
roborated by its consistently high ranking on platforms such as DB-Engines. As of May 2025,
DB-Engines places Redis as the leading (#1) Key-value store and the #7 most popular data-
base management system overall, with a score of 152.19. This positions it as a critical system
within the NoSQL landscape, where it distinguishes itself through remarkable versatility and
performance, even when compared to other leading NoSQL databases like MongoDB
(ranked #5 overall and #1 Document store with a score of 402.51) [11]. The DB-Engines
ranking methodology considers factors such as search engine interest, frequency of technical
discussions, job offers, and social media presence, providing a strong indicator of industry
adoption and relevance, thus validating the choice of Redis as a focal system for this study.
Redis has distinguished itself through remarkable versatility and performance, powering crit-
ical infrastructure for 80% of Fortune 500 companies, including real-time analytics, fraud
detection, and dynamic session management [4], [8]–[10], [12].

Despite its widespread adoption, Redis’s architectural design is simultaneously its
strength and potential vulnerability [4], [13]. To maintain all data in memory, Redis ensures
exceptional speed and reliability [4], [12]. However, this in-memory design introduces inher-
ent risks, necessitating observability solutions to monitor system metrics and mitigate poten-
tial failures [14]. Like other NoSQL databases, Redis presents unique security vulnerabilities,
particularly concerning injection attacks. These vulnerabilities stem from fundamental archi-
tectural characteristics allowing unauthorized data manipulation [8], [15]. Redis's command
structure, which enables direct operations on key-value pairs using commands like GET, SET,
and DEL, differs markedly from traditional SQL query mechanisms, creating distinctive in-
jection risk profiles [8], [15]. Redis can be particularly susceptible to injection attacks, with
potential consequences ranging from data corruption to remote code execution [16], [17].
Researchers have identified two primary injection attack vectors: command injection and Lua
script injection, with the latter being particularly relevant to Redis environments. By default,
Redis’s configuration can allow credential-free access, exponentially increasing potential ex-
ploitation risks [18].

While extensive research has been conducted on injection vulnerabilities in relational
and document databases like MongoDB and CouchDB [19]–[22], a comprehensive investi-
gation into key-value database injection risks remains understudied despite their unique risk
profile. Redis’s lack of schema enforcement and default permissive configurations expose
critical attack surfaces: unauthenticated access allows adversaries to execute arbitrary com-
mands or weaponize Lua scripts for remote code execution [16]. Recent incidents, such as
cryptocurrency mining via exposed Redis instances [23], underscore the need to address these
risks. This study aims to address this critical research gap by extensively evaluating injection
attack vectors targeting Redis platforms through a controlled, multi-configuration evaluation
of Redis injection vectors. We propose two research objectives: first, to assess the effective-
ness of password protection and Access Control Lists (ACLs) in mitigating command and
Lua script injection attacks targeting Redis. Second, to identify and evaluate the residual se-
curity risks that persist, particularly in dynamically constructed Lua scripts, when Redis ACLs
are misconfigured.

Our methodology combines Dockerized Redis instances, a Python-driven systematic
suite of exploit simulations, and CVSS v3.1 scoring to quantify vulnerabilities across three
configurations: default (no security), password-protected, and ACL-secured environments.
This research makes the following key contributions:

• We provide the first systematic academic evaluation of Redis injection vulnerabilities
across the command and Lua script attack vectors in modern Redis versions (7.4.1),
addressing a critical gap in NoSQL security research.

• We propose a novel Redis-specific threat model that integrates Redis’s unique architec-
ture (e.g., in-memory design, Lua scripting risks) to guide future research and mitigation
strategies.

• We empirically validate the effectiveness of ACLs in mitigating injection attacks in ex-
ploit success rates compared to other configurations.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 555

The structure of this article reflects the systematic progression of the study: Section 2
reviews the body of related work, Section 3 elaborates on the research methodology, Section
4 investigates specific injection scenarios, and Section 5 discusses findings, contributions, and
future research directions.

2. Literature Review

This section delves into the security implications of NoSQL databases, specifically fo-
cusing on Redis and its vulnerability to injection attacks. We begin with an overview of
NoSQL databases and a detailed discussion of Redis’s architecture and security challenges.
Finally, we critique prior work and highlight the gaps this study addresses.

2.1. Overview of NoSQL Databases

The evolution of data management technologies has been significantly influenced by the
emergence of NoSQL databases, which represent a paradigm shift from traditional relational
database management systems (RDBMS) and enable flexible, high-performance solutions for
managing unstructured and semi-structured data [4], [13]. They are categorized into four pri-
mary types based on their data storage models: key-value, document, columnar, and graph
databases, as shown in Table 1[24]. NoSQL databases have become essential in big data and
real-time applications, offering horizontal scalability, schema flexibility, and enhanced perfor-
mance [8], [9]. However, their flexibility and scalability come at the cost of reduced inherent
security features [3], [18]. Research has shown that many NoSQL systems, including Redis,
prioritize performance and schema-less data storage over security, making them susceptible
to attacks [3]. For example, MongoDB and CouchDB have been extensively studied for in-
jection vulnerabilities [20], [22], but key-value stores like Redis remain under-researched, par-
ticularly in the context of modern attack vectors.

Table 1. Types of NoSQL Databases.

Type Description Examples

Key-Value Stores data as key-value pairs, ideal for caching and ses-
sion management.

Redis, DynamoDB

Document Handles semi-structured data in JSON or BSON formats. MongoDB, CouchDB

Columnar Organizes data into columns for analytical processing. Cassandra, HBase

Graph Specialized in managing relationships between data points. Neo4j, ArangoDB

While each NoSQL category presented in Table 1 offers unique advantages and faces

distinct security considerations, this study focuses on Redis, a prominent example from the
key-value store category. Although other key-value databases such as DynamoDB share ar-
chitectural similarities, Redis was selected for its widespread adoption (powering 80% of For-
tune 500 companies [12], open-source transparency, and documented prevalence in security-
critical applications [8], [15]. Furthermore, Redis exhibits a higher incidence of reported in-
jection vulnerabilities than proprietary alternatives [18], making it an ideal candidate for em-
pirical security analysis.

2.2 Redis NoSQL Database

Redis, a versatile open-source in-memory key-value data store, is renowned for its ex-
ceptional performance and flexibility [13]. It supports a wide range of data structures, includ-
ing strings, hashes, lists, sets, and sorted sets, enabling it to handle diverse applications [8],
[15]. Redis can execute high-speed operations by capitalizing on its in-memory architecture,
making it ideal for use cases such as caching, distributed locking, and session management
[13], [25].

Redis leverages a single-threaded architecture to minimize context switching and opti-
mize CPU cache utilization [14]. Figure 1 illustrates the fundamental components of Redis's
primary architecture. At its core, Redis operates on a client-server model, the Redis client
initiates requests for data operations, which are then processed by the Redis server [26]. A
key aspect of Redis's renowned performance is its Redis cache, which signifies that data is
predominantly stored and managed directly in the system's main memory. This in-memory
storage allows for exceptionally fast read and write operations, as it avoids the latency typically

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 556

associated with disk-based storage. The data structures (such as Strings, Lists, Hashes, Sets,
and Sorted Sets, as indicated in Fig. 1) are all held within this in-memory cache, enabling the
rapid data manipulation and retrieval, making Redis ideal for applications demanding low
latency and high throughput [8]. Its master-slave replication architecture also ensures high
availability and scalability, making it suitable for high-concurrency environments [8], [15]. Be-
yond basic key-value storage, Redis's versatility extends to caching systems, distributed lock-
ing, real-time messaging, and domain-specific applications like geographic data management
and healthcare data retrieval [25], [27], [28].

Figure 1. Redis Primary Architecture [26]

Redis’s dominance in modern infrastructure is evident from its consistent ranking as a
top-10 database system globally [11] and its adoption by 80% of Fortune 500 companies for
mission-critical applications such as real-time analytics, fraud detection, and dynamic session
management [9], [12]. Redis powers over 1.5 million active deployments worldwide, handling
over 1.2 million operations per second in high-traffic environments like e-commerce and
healthcare systems [9], [29]. This widespread adoption and its default exposure risks render
Redis a high-priority target for security analysis. Also, its powerful Lua scripting can be ex-
ploited by malicious actors to inject malicious code and compromise the database [16], [17].
Additionally, misconfigurations can expose Redis to various attacks, including command in-
jection [30], [31]. Recent vulnerabilities, such as CVE-2023-28859 and CVE-2024-31227,
highlight the ongoing risks associated with Redis deployments. These vulnerabilities under-
score the need for rigorous security analysis and mitigation strategies. To address some of
these security challenges, researchers are investigating various mitigation strategies, such as
input validation, encryption, and static analysis tools implemented in later versions of Redis
[32]–[35].

2.3. Related Works

The rapid evolution of database technologies has precipitated a critical need for com-
prehensive security assessments, particularly in NoSQL databases [3]. Early research exposed
the fundamental security challenges inherent in these dynamic database systems, marking a
pivotal moment in understanding the divergence between traditional SQL-based and NoSQL
database security paradigms [4], [13]. This demonstrated that the inherent flexibility of
NoSQL databases creates unique vulnerability landscapes that traditional security mecha-
nisms fail to address adequately [4].

Different NoSQL database architectures necessitate a discerning approach to security
analysis. Database types, from document-oriented systems like MongoDB to key-value stores
like Redis, present distinct security challenges [3], [4]. Alotaibi et al. [36] emphasized the glar-
ing deficiencies in access control mechanisms across these platforms, highlighting the urgent
need for developing sophisticated, granular protection strategies for sensitive data. Their re-
search underscored a fundamental gap in existing security frameworks, which include the lack
of fine-grained access controls that can adapt to the dynamic nature of NoSQL database
architectures.

Empirical investigations have systematically mapped the complex vulnerability landscape
across NoSQL database types. Reddy et al. [3] conducted a comprehensive analysis that re-
vealed various security vulnerabilities affecting various NoSQL database types. Their research
uncovered that code execution vulnerabilities are particularly pervasive, affecting document,
key-value, graph, and multi-model databases with alarming consistency. Moreover, the study
revealed that Denial of Service (DoS) attacks and Cross-Site Scripting (XSS) vulnerabilities

Redis

Server

Redis

Client

Redis

Cache

Data Structures

(Strings, Lists, Hashes, Sets, Sorted Sets)

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 557

demonstrate significant variations across database architectures, with document, key-value,
and column-based databases displaying heightened susceptibility.

The unique case of the Redis database offers a particularly intriguing case study in
NoSQL database security dynamics. Recent vulnerabilities, including memory buffer over-
flow issues, further underscore the importance of rigorous security analysis for this widely
adopted Redis data store [3]. Unlike many NoSQL databases, Redis initially demonstrated a
more resilient architectural approach attributed to its binary-safe protocol with prefixed-
length strings, which inherently mitigates traditional string escaping vulnerabilities common
in injection attacks [37]. However, subsequent research by Kairoju et al. [35] revealed that
while Redis injection using the standard library is difficult, default configurations still pose
significant security risks, particularly regarding authentication and network access, challenging
the initial perception of Redis as an inherently secure platform. The study also highlighted the
inherent risks associated with Redis's default password handling, including storing passwords
in plaintext without limiting rates. This emphasizes the critical need for implementing strong
passwords and utilizing encrypted authentication mechanisms to enhance security.

Fahd et al. [38] evaluated the security vulnerabilities inherent in NoSQL database sys-
tems, particularly in Big Data management. The paper focused on built-in security mecha-
nisms, encryption, authentication, authorization, and auditing vulnerabilities, comparing the
risk levels across popular NoSQL systems. While the paper highlighted a potential injection
attack scenario in older Redis versions, it is important to note that modern Redis implemen-
tations have implemented robust security measures to mitigate such vulnerabilities. These
safeguards include strict type checking and input validation, which prevent unexpected argu-
ment conversions and malicious input manipulation.

A critical emerging security concern involves the integration of Lua scripting in Redis.
Castro [16] highlighted the emerging attack vector where malicious actors could exploit Lua
script vulnerabilities to execute unauthorized commands. Previous investigations by Costin
31 and Sanchez et al.29 provided preliminary observations but lacked the systematic experi-
mental validation necessary to understand these risks.

Zaki et al. [32] were among the earliest researchers to propose innovative security exten-
sions specifically for key-value NoSQL, demonstrating a proactive approach to addressing
inherent vulnerabilities. Their research focused on enhancing authentication and encryption
mechanisms, proposing an algorithm that improved data confidentiality and integrity and de-
livered faster encryption and decryption performance compared to existing solutions.
Ankomah et al.18 found that Redis's default configuration allows unauthenticated access, sig-
nificantly increasing exploitation risk. Their NoSQL investigation revealed that the recent
version of Redis uses ACLs for authentication. Hu [13] broadened the security discussion by
promoting a comprehensive approach to safeguarding NoSQL databases. The study empha-
sized three critical security dimensions: protecting data at rest, securing data in transit, and
developing sophisticated injection attack mitigation strategies. This approach acknowledges
the complex interplay of security challenges in contemporary database environments.

Nikiforova et al. [39] conducted an empirical review by scanning over 15,000 IP ad-
dresses to map database vulnerabilities. The research evaluated existing literature on Open
Source Intelligence (OSINT) and Internet of Things Search Engines (IoTSE) to collect and
analyze publicly available data. It also discusses the implications of these findings for both
individual organizations and broader networks. The study identified that poorly protected
databases are accessible to external actors, posing serious data integrity and security risks. The
study’s vulnerability analysis highlights the need for continuous security assessment. Redis
was found to have weak authentication due to weak passwords, insufficient intrusion protec-
tion, and the potential for sensitive data exposure.

Recently, researchers have concentrated on conducting in-depth analyses of injection
attacks targeting specific NoSQL databases. Landuyt et al. [5] investigated query injection
vulnerabilities in graph-oriented databases, specifically Neo4j. The research employed a com-
bination of manual verification of source code and automated injection test cases to assess
the residual risks associated with query injection in Neo4j. It examined parameterized queries
established at development time and dynamically constructed queries executed at runtime.
The findings indicated that parameterization can effectively mitigate certain injection risks,
but dynamic query construction remains a significant security challenge. While static queries
provide a more secure approach, they may not be suitable for all use cases, necessitating a
balanced approach combining security and flexibility.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 558

Dwivedi et al. [22] further expanded the understanding of NoSQL security by conduct-
ing an extensive survey on NoSQL injection in MongoDB. The research employed a system-
atic review of existing literature, including 18 quality research papers, MongoDB manuals,
and real-world incident analyses. It examined various security breaches, current security
measures, and data masking techniques. The study identified several critical vulnerabilities in
MongoDB, including inadequate authentication and authorization mechanisms, exposure of
REST APIs, and susceptibility to NoSQL injection attacks. The study emphasized the im-
portance of implementing strong access controls, encryption protocols, input validation
mechanisms, and regular security audits as fundamental defensive strategies.

A notable gap in current research lies in the comprehensive analysis of injection attacks
specifically targeting Redis. While previous studies have touched upon Lua scripting vulnera-
bilities [31], [33], a systematic experimental validation is still lacking. This study aims to fill
this gap by conducting a structured investigation into Command and Lua script injection
vulnerabilities. Furthermore, the study examines the impact of default configuration weak-
nesses, which have been identified as significant security risks in comparative studies but often
lack empirical validation. The research will provide concrete evidence of their potential impact
by testing these vulnerabilities in controlled environments.

3. Methodology

This section details our systematic approach to evaluating Redis injection vulnerabilities
across different security configurations. We employ a rigorous experimental framework de-
signed to ensure reproducibility, validity, and comprehensive assessment of both command
and Lua script injection vectors.

Figure 2. Research stages

This approach extends traditional penetration testing methodologies by incorporating
formal vulnerability scoring (CVSS v3.1) and analysis of exploitation success rates across mul-
tiple configurations. The framework systematically compares security configurations across

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 559

the vulnerability payloads while maintaining experimental validity through containerized en-
vironments that eliminate confounding variables. Figure 2 illustrates this framework, which
consists of four interconnected phases: environment preparation, vulnerability testing, secu-
rity assessment, and testing protocols.

3.1. Experimental Environment

To ensure reproducibility and isolation, we implemented a Dockerized testing environ-
ment that simulates real-world Redis deployments while controlling for external variables.
Table 2 details the technical specifications of our experimental environment.

Table 2. Experimental Environment Specifications.

Component Specification Purpose

Host System Ubuntu 22.04 LTS Base operating system

Virtualization Docker 24.0.5 Container orchestration

Redis Version 7.4.1 (latest stable) Target database

Testing Framework Python 3.12 with redis-py 5.0.1 Automation and payload delivery

Network Configuration Isolated bridge network Prevent external interference

Monitoring Tools Prometheus 2.45.0 Performance and behavior monitoring

Analysis Environment Jupyter Notebook 7.0.3 Data processing and visualization

This environment design addresses a critical limitation in previous Redis security studies,

which often tested older versions (≤6.0) that lack modern security features like ACLs [18]. By
testing against Redis 7.4.1, our findings reflect the current security posture of production
Redis deployments.

3.2. Redis Configuration Scenarios

To evaluate the effectiveness of different security controls, we tested four distinct Redis
configurations that represent common deployment scenarios in production environments:

Table 3. Redis Configuration Scenarios.

Configuration Description Security Features Real-world Parallel

Default No authentication or
ACLs

Protected-mode=yes (localhost
only)

Development environ-
ments

Password-
Protected

Strong password
authentication

requirepass="StrongPass-
word123!"

Legacy production
systems

Permissive ACL ACL with broad
permissions

ACL user with +@all permis-
sions

Transitional deploy-
ments

Restrictive ACL Principle of least
privilege

ACL user with minimal com-
mand categories

Hardened production
systems

As depicted in Table 3, each configuration was implemented as a separate Docker con-

tainer with identical Redis versions and system resources, ensuring that observed security
differences resulted solely from the applied security controls. The Docker Compose config-
uration files and container initialization scripts are available in our public repository to facili-
tate the reproduction of our experiments.

3.3. Taxonomy of Redis Injection Vulnerabilities

To analyze Redis injection vulnerabilities, we propose a taxonomy that extends tradi-
tional injection classification frameworks [40] to accommodate Redis's unique architecture.
Table 4 presents this taxonomy with representative payloads and associated CVEs. This tax-
onomy provides a structured framework for analyzing Redis vulnerabilities that previous re-
search has lacked. Prior work cataloged individual vulnerabilities but failed to develop a com-
prehensive classification system that captures the relationships between attack vectors and
their underlying architectural causes [31].

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 560

Table 4. Taxonomy of Redis Injection Vulnerabilities.

Category Attack Vector Example Payload Impact CVE Reference

Command
Injection

Information Disclosure CONFIG GET * Reveals sensitive configuration CVE-2023-28859

Authentication Bypass CONFIG SET requirepass "" Removes password protection CVE-2021-32627

Data Manipulation FLUSHALL Destroys all databases -

ACL Manipulation ACL SETUSER default on nopass
+@all

Grants unrestricted access CVE-2024-31227

Lua Script
Injection

Sandbox Escape EVAL "return io.popen('id'):read('*a')"
0

Executes arbitrary OS com-
mands

CVE-2022-0543

Memory Disclosure EVAL "return redis.call('MEMORY',
'MALLOC-STATS')" 0

Reveals memory allocation de-
tails

-

Command Chaining EVAL "return redis.call('CONFIG',
'SET', 'requirepass', '')" 0

Executes privileged commands CVE-2023-28425

Memory
Manipulation

Resource Exhaustion SET x "A"*1000000 Consumes excessive memory CVE-2023-28856

Heap Corruption Malformed protocol packets Crashes server or enables code
execution

CVE-2021-29477

3.3.1. Injection Vector Testing Methodology

We developed a comprehensive test suite of 31 injection payloads across two primary
attack vectors: command injection and Lua script injection. These payloads were systemati-
cally derived from three authoritative sources:

• Official Redis documentation and command references

• CVE records and security advisories (2020-2024)

• Real-world exploitation techniques documented in security research
The payloads were categorized according to our Redis-specific threat taxonomy (Table

4) to ensure comprehensive attack surface coverage. Table 5 provides representative examples
from our test suite.

Table 5. Sample injection test cases.

Injection Type Feature Payload Example

Command Injection Information
Disclosure

"INFO", "CLIENT LIST", "CONFIG GET *", "SCAN 0",
"CONFIG GET protected-mode", "CONFIG GET require-

pass"

Command Injection System
Commands

"EVAL 'return io.popen("id"):read("*a")' 0",

"EVAL 'return io.popen("ls -la /"):read("*a")' 0",

"EVAL 'return io.popen("whoami"):read("*a")' 0"

Command Injection Memory
Exposure

"MEMORY DOCTOR", "MEMORY MALLOC-STATS",
"MEMORY PURGE", "SET large_key {'A' * 1000000}"

Command Injection Database
Operations

"FLUSHALL", "FLUSHDB", "KEYS *", "DEL *"

Command Injection Authentication
Bypass

"CONFIG SET requirepass ''"

Command Injection ACL Bypass "ACL SETUSER default on nopass +@all"

Lua Script Injection System
Command
Execution

"local os = require('os'); return os.execute('id')", "return
io.popen('whoami'):read()", "return io.popen('ls -la'):read()"

Lua Script Injection Information
Disclosure

"return redis.call('INFO')", "return redis.call('CONFIG',
'GET', '*')", "local acl = redis.call('ACL', 'LIST'); return acl"

Lua Script Injection Memory
Exposure

"local t = {}; for i=1,1000000 do t[i] = i end; return #t", "re-
turn redis.call('MEMORY', 'MALLOC-STATS')", "return re-

dis.call('MEMORY', 'DOCTOR')"

Lua Script Injection Database
Operations

"return redis.call('KEYS', '*')", "return redis.call('DBSIZE')",
"return redis.call('LASTSAVE')"

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 561

Table 5 demonstrates the diverse scope of injection type, covering Redis-specific func-

tionalities. The 31 injection payloads evaluated in this study were systematically curated to
ensure representativeness and practical relevance to real-world Redis deployments. Our meth-
odology prioritized payloads with documented exploitation in security and penetration testing
frameworks, ensuring alignment with observed attacker behaviors. We stratified payloads
across its core functional domains command, and Lua scripting to map Redis's attack surface.
Technical diversity was enforced by selecting payloads that exploit distinct mechanisms, such
as protocol-level injections, script sandbox escapes, and privilege escalation, rather than re-
dundant syntactic variations. Collectively, these payloads account for a high percentage of
Redis-specific injection CVEs (2018–2024, per NIST NVD) and are derived from authorita-
tive sources, including Redis’s security advisories, peer-reviewed exploit databases, and indus-
try penetration testing reports.

The complete test suite will enable other researchers to extend test cases or modify our
experiments. The payloads crafted for each feature are discussed as follows:

• Information Disclosure: Information disclosure commands such as INFO, CLIENT
LIST, CONFIG GET *, and SCAN 0 were selected to test the server's exposure to
unauthorized information access. These commands provide critical details about server
configuration, connected clients, and operational status [41]. For example, the payload
CONFIG GET requirepass identifies if password protection is enabled, while CONFIG
GET protected-mode checks for secure configuration defaults. These commands repli-
cate reconnaissance techniques attackers use to gather intelligence, which is often the
first step in planning an attack. Testing these vulnerabilities is essential for diagnosing
security misconfigurations that could lead to unauthorized access or data leaks. Also, it
reinforces the importance of strict access control and script execution permissions in
Redis environments. This is further underscored by real-world vulnerabilities like CVE-
2023-28859, where attackers can get sensitive information to launch further attacks.

• System Commands: Lua script payloads, such as EVAL 'return io.popen("id"):
read("*a")' 0, exploit Redis's scripting capabilities to execute system commands. This
feature was chosen to assess potential vulnerabilities leading to remote code execution
(RCE) and because Lua scripts allow execution of commands at the system level, which,
if exploited, can lead to full system compromise [16], [42], [43]. Such exploits, if success-
ful, can result in full system compromise, making this a critical security concern. The
relevance of these tests is underscored by real-world vulnerabilities like CVE-2022-0543
[42], where attackers leveraged similar mechanisms. Testing these scenarios validates the
server's ability to prevent unauthorized command execution and helps identify if Redis
securely limits Lua's ability to interact with the underlying operating system.

• Memory Exposure: Payloads like MEMORY DOCTOR, MEMORY MAL-LOC-
STATS, MEMORY PURGE, STRALGO LCS, and SET large_key {'A' * 1000000} tar-
get Redis's memory management mechanisms to cause buffer overflow. These features
were chosen based on their potential to expose vulnerabilities leading to buffer over-
flows, denial-of-service (DoS) attacks, or information leakage through memory diagnos-
tics [16]. These tests are crucial for identifying vulnerabilities that may lead to denial-of-
service (DoS) attacks, information leakage through memory diagnostics, or remote code
execution. Evaluating Redis's handling of memory-intensive operations ensures resili-
ence under stress and highlights areas that may require optimization or stricter access
controls. A real-world vulnerability test case, CVE-2021-29477 [44] and CVE-2021-
32762 [45], results in the corruption of the heap.

• Database Operations: Commands such as FLUSHALL, KEYS *, DBSIZE, and DEL *
assess risks associated with unauthorized database manipulations. These features were
chosen for their direct impact on data integrity and availability, as misuse of these com-
mands can delete or corrupt critical data [23], [46]. Testing these features is vital for
environments where Redis is used as a primary datastore, ensuring the robustness of
access controls, protection against malicious actions, and restricting unauthorized access
to database contents via scripts. This is particularly important in multi-tenant environ-
ments or when Redis is used as a caching layer for sensitive data.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 562

• Authentication Bypass: Testing with payloads like CONFIG SET requirepass evaluates
the robustness of password-based security mechanisms [23]. This feature replicates sce-
narios where attackers attempt to disable or override authentication requirements. Given
the criticality of authentication in securing Redis servers, this test assesses whether the
server can maintain its security posture even in the face of misconfigurations or exploits
targeting authentication protocols. Some real-world vulnerabilities related to this feature
include CVE-2021-32627 [47], CVE-2020-4670 [48], etc.

• ACL Bypass: The command ‘ACL SETUSER default on nopass +@all’ was selected to
test the enforcement of ACLs in Redis. This payload evaluates the integrity of Redis's
ACL implementation by attempting to grant full permissions to the default user without
a password [16]. Such a vulnerability can be found on CVE-2024-31227 [16]. Ensuring
that ACLs cannot be bypassed is particularly critical in environments that rely on them
as the primary access control mechanism.

3.4. Testing Protocol

We implemented a rigorous testing protocol to ensure methodological consistency
across all experiments:

• Container Initialization: Each Redis configuration was deployed in a fresh Docker con-
tainer to prevent cross-contamination between tests.

• Baseline Verification: Before injection testing, we verified that each configuration oper-
ated as expected by performing standard Redis operations.

• Automated Testing: Python scripts systematically executed each payload against each
configuration, recording success/failure status, error messages, and execution time.

• Result Validation: Each successful exploitation was manually verified to confirm the vul-
nerability and rule out false positives.

• Configuration Reset: The container was reset to its initial state after each test case to
prevent sequential dependencies between tests.
This protocol addresses methodological limitations in previous studies that often relied

on manual testing without systematic validation [31].

3.5. Vulnerability Assessment Framework

To quantify the security impact of each vulnerability, we employed CVSS v3.1, which
provides a standardized framework for assessing the severity of security vulnerabilities [49].
For each successful exploitation, we calculated a CVSS score based on the following metrics:

• Attack Vector (AV): Network for remote access scenarios

• Attack Complexity (AC): Low for straightforward exploitation

• Privileges Required (PR): None for unauthenticated access, Low for authenticated

• User Interaction (UI): None (no user interaction required)

• Scope (S): Unchanged or Changed depending on impact

• Confidentiality (C): High for information disclosure

• Integrity (I): High for data manipulation

• Availability (A): High for denial-of-service potential
This scoring system enabled objective comparison of vulnerability severity across differ-

ent configurations and attack vectors. Table 6 shows the CVSS severity rating scale used in
our analysis.

Table 6. CVSS v3.1 Severity Levels.

CVSS Score Severity Rating Description

0.0 None No vulnerability present

0.1-3.9 Low Limited impact, difficult to exploit

4.0-6.9 Medium Significant impact but limited scope

7.0-8.9 High Serious impact requiring attention

9.0-10.0 Critical Severe impact requiring immediate remediation

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 563

We also examined the success rate of each configuration. Exploit success was calculated

by dividing the number of successful exploit attempts by the total number of test cases per-
formed. This metric quantifies the effectiveness of each Redis configuration in mitigating or
preventing security vulnerabilities. Mathematically, the success rate is defined as in Equation
(1).

Success Rate(%) = (
Number of Successful Exploits

Total Number of Tests
) × 100 (1)

Where Number of Successful Exploits refers to the total count of vulnerabilities exploited
successfully during testing; Total Number of Tests represents all payloads executed across
each configuration, encompassing attack categories including command injection and Lua
script injection. A total of 31 tests were conducted.

A four-tiered risk rating system, informed by the principles of quantitative risk assess-
ment described by Hubbard et al. [50] was developed to categorize the security posture of
Redis configurations based on their calculated exploit success rates as either high, medium,
low, or no vulnerability risk based on the following;

• Critical Risk: Assigned to configurations where the exploit success rate exceeds 50%,
indicating significant vulnerabilities that demand immediate remediation.

• High Risk: Assigned to configurations with success rates between 25% and 50%, high-
lighting major weaknesses that pose considerable security threats.

• Medium Risk: Applied to configurations with success rates ranging from 10% to 25%,
indicating moderate vulnerabilities with manageable risk levels.

• Low Risk: For configurations exhibiting success rates below 10%, suggesting strong se-
curity postures with minimal exploitability.

4. Results and Discussion

This section presents our comprehensive analysis of Redis injection vulnerabilities across
different security configurations. We evaluate quantitative exploitation metrics and qualitative
security implications, providing an in-depth assessment of Redis's security posture under var-
ious protection mechanisms.

4.1. Default Configuration Vulnerabilities

The default Redis configuration demonstrated critical security weaknesses across multi-
ple attack vectors, as detailed in Table 7.

Table 7. Redis Configuration Scenarios.

Category Number of
Tests

Successful
Exploits

CVSS Scores Severity Distribution

Info Disclosure 6 6 7.5 High: 6

System Commands 3 0 - -

Memory Exposure 4 4 5.3 Medium: 4

Database Ops 4 4 3.7 Low: 4

Auth Bypass 1 1 7.5 High: 1

ACL Bypass 1 1 9.8 Critical: 1

Lua RCE 3 0 - -

Lua Info Disclosure 3 1 7.5 High: 1

Lua Memory Exposure 3 3 5.3 Medium: 3

Lua Db Ops 3 3 3.7 Low: 3

Total 31 23 -

Critical: 1

High: 8

Medium: 7

Low: 7

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 564

4.1.1. Command Injection Analysis

Command injection testing revealed comprehensive security failures in the default con-
figuration:

• Information Disclosure: All information disclosure payloads (INFO, CLIENT LIST,
CONFIG GET *, SCAN 0, CONFIG GET protected-mode, CONFIG GET require-
pass) executed successfully, providing attackers with detailed system information, includ-
ing configuration parameters, connected clients, and database contents. This reconnais-
sance capability represents the initial stage of sophisticated attacks.

• Authentication Manipulation: The CONFIG SET requirepass '' command executed suc-
cessfully, demonstrating the ability to remove password protection entirely. This repre-
sents a critical security failure that undermines any subsequent authentication attempts.

• ACL Manipulation: The ACL SETUSER default on nopass +@all command succeeded,
allowing attackers to create or modify users with unrestricted permissions. This vulner-
ability enables privilege escalation and persistence even if other security controls are later
implemented.

• Data & Memory Manipulation: All database operations (FLUSHALL, FLUSHDB,
KEYS *, DEL *) and memory operations (MEMORY DOCTOR, MEMORY MAL-
LOC-STATS, STRALGO LCS, MEMORY PURGE) executed successfully, demon-
strating the ability to manipulate memory and destroy data without restrictions.
The only failed command injection attempts involved direct system command execution,

which Redis does not support natively.

4.1.2. Lua Script Injection Analysis

Lua script injection testing revealed more nuanced vulnerabilities:
Sandbox Limitations: Direct system command execution attempts via Lua's functions

failed, indicating that Redis's Lua sandbox correctly restricts access to certain system func-
tions.

• Command Chaining: Some Lua information disclosure payloads successfully demon-
strated that Lua scripts can execute certain Redis commands to obtain sensitive infor-
mation.

• Memory & Database Operations: All Lua memory exposure and database operations
tests successfully mirror the vulnerabilities observed in direct command injection.
These findings highlight the critical security risks in Redis's default configuration, partic-

ularly the complete lack of authentication and authorization controls. The lack of even mini-
mal security features underscores the inherent risks of leaving Redis open to the public and
reinforces the necessity of implementing at least basic authentication measures [18], [39].

4.2. Password-Protected Configuration Analysis

The password-protected configuration demonstrated substantially improved security
compared to the default configuration, with only 1 out of 31 payloads (3.23%) executing
successfully, as shown in Table 8. The password protection successfully mitigated almost all
injection attempts, consistently enforcing authentication requirements across most command
types. However, a critical vulnerability was identified: the CONFIG SET requirepass '' com-
mand successfully bypassed authentication, effectively removing the password requirement.
This exploit exposes a significant risk, as successful execution grants an attacker unrestricted
access to the server.

These finding addresses part of the second objective by identifying an authentication
bypass vulnerability that persists even with password protection. The ability to remove pass-
word protection using a privileged command represents a critical residual risk in password-
protected configurations.

4.3. ACL-Protected Configurations

Our testing of ACL-protected configurations revealed dramatic security differences
based on implementation details, highlighting the critical importance of proper ACL config-
uration.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 565

Table 8. Vulnerability Breakdown for Password-Protected Configuration.

Category Number of
Tests

Successful
Exploits

CVSS Scores Severity Distribution

Info Disclosure 6 0 - -

System Commands 3 0 - -

Memory Exposure 4 0 - -

Database Ops 4 0 - -

Auth Bypass 1 1 7.5 High: 1

ACL Bypass 1 0 - -

Lua RCE 3 0 - -

Lua Info Disclosure 3 0 - -

Lua Memory Exposure 3 0 - -

Lua Db Ops 3 0 - -

Total 31 1 -

Critical: 0

High: 1

Medium: 0

Low: 0

4.3.1. Permissive ACL Configuration

The permissive ACL configuration demonstrated surprisingly poor security, with a
48.39% exploitation success rate (15/31 payloads)—substantially worse than password pro-
tection alone, as detailed in Table 9.

Table 9. Vulnerability Breakdown for Permissive ACL-Protected Configuration.

Category Number of
Tests

Successful
Exploits

CVSS Scores Severity Distribution

Info Disclosure 6 6 7.5 High: 6

System Commands 3 0 - -

Memory Exposure 4 4 5.3 Medium: 4

Database Ops 4 4 3.7 Low: 4

Auth Bypass 1 1 7.5 High: 1

ACL Bypass 1 0 - -

Lua RCE 3 0 - -

Lua Info Disclosure 3 0 - -

Lua Memory Exposure 3 0 - -

Lua Db Ops 3 0 - -

Total 31 15 -

Critical: 0

High: 7

Medium: 4

Low: 4

This configuration showed mixed results:

• Command Injection: Information disclosure, memory exposure, database operations,
and authentication bypass payloads all succeeded, indicating inadequate command re-
strictions despite ACL implementation.

• Lua Script Protection: Notably, all Lua-based injections failed, demonstrating that even
permissive ACLs can effectively restrict script-based attacks.
The permissive ACL configuration failed to restrict critical administrative commands

due to overly broad permissions. This finding directly addresses Objective 2 by demonstrating
that misconfigured ACLs create substantial residual risks, particularly for command-based
injections.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 566

4.3.2. Restrictive ACL Configuration

In stark contrast, the restrictive ACL configuration demonstrated highly effective vul-
nerability mitigation under the conditions of this study, with zero successful exploits across
all 31 tested payloads, as shown in Table 10.

Table 10. Vulnerability Breakdown for Restrictive ACL-Protected Configuration.

Category Number of
Tests

Successful
Exploits

CVSS Scores Severity Distribution

Info Disclosure 6 0 - -

System Commands 3 0 - -

Memory Exposure 4 0 - -

Database Ops 4 0 - -

Auth Bypass 1 0 - -

ACL Bypass 1 0 - -

Lua RCE 3 0 - -

Lua Info Disclosure 3 0 - -

Lua Memory Exposure 3 0 - -

Lua Db Ops 3 0 - -

Total 31 0 -

Critical: 0

High: 0

Medium: 0

Low: 0

All command injection tests failed as shown in Table 9 due to either invalid username-

password pairs or the disabled status of the default user. This indicated that unauthorized
users cannot interact with the Redis server, as ACL rules prevent both unauthenticated and
misconfigured access. These failures are not attributable to network isolation but rather the
effective enforcement of authentication and ACL policies. The ACL bypass attempt using
ACL SETUSER default on nopass +@all resulted in an "ACL permission denied" error. This
reflects the configuration's strict access control in disabling the default user, preventing any
unauthorized access.

The restrictive ACL configuration successfully implemented the principle of least privi-
lege by:

• Disabling the default user and creating users with limited permissions

• Restricting command access to only necessary operations

• Preventing access to keys by default and explicitly allowing only required keys

• Requiring authentication and denying access to dangerous command categories
This configuration effectively mitigated all tested injection vectors, including both com-

mand and Lua script injections. This finding conclusively addresses Objective 1 by demon-
strating that properly configured ACLs provide comprehensive protection against injection
vulnerabilities.

4.4. Vulnerability Assessment Overview

Our testing on Redis version 7.4.1 using 31 distinct injection payloads across four con-
figurations revealed significant variations in security effectiveness. To delineate these differ-
ences, Fig. 3 presents a comparative visualization of each configuration's vulnerability security
risk levels by showing the percentage of the 31 attempted injection payloads that were suc-
cessful against each. This graphical representation illustrates the exploitation success rates,
demonstrating a clear security progression from default settings to restrictive ACL implemen-
tation. As depicted in Fig. 3, the default configuration exhibited an alarming 74.19% exploi-
tation success rate (23/31 payloads), while password protection significantly reduced this to
3.23% (1/31 payloads). Notably, the permissive ACL configuration showed a 48.39% success
rate (15/31 payloads), substantially higher than password protection alone, a counterintuitive
finding that challenges conventional security assumptions. The restrictive ACL configuration

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 567

achieved complete mitigation within the scope of our controlled experiment, yielding zero
successful exploits against the 31 tested payloads.

Figure 3. Exploitation Success Rates by Configurations

These findings quantitatively address Objective 1 by demonstrating that while password
protection provides substantial security improvement, ACLs' effectiveness varies dramatically
based on implementation details, with restrictive ACLs providing complete vulnerability mit-
igation.

4.5. Comparative Security Analysis

Our findings enable a comprehensive comparison of Redis security configurations based
on empirical vulnerability data. Figure 4 visualizes the security effectiveness across configu-
rations.

Figure 4. Comparative Security Effectiveness by Configuration and Attack Vector

These findings, as depicted in Table 11, reveal the following:

• Security Progression: A clear security progression exists from default configuration
(74.19% vulnerable) to restrictive ACL (0% vulnerable), with password protection
(3.23% vulnerable) providing substantial but incomplete security.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 568

• ACL Implementation Criticality: The dramatic difference between permissive ACL
(48.39% vulnerable) and restrictive ACL (0% vulnerable) demonstrates that ACL effec-
tiveness depends entirely on proper implementation following the principle of least priv-
ilege.

• Attack Vector Variations: Command injection showed higher success rates in permissive
configurations, but both attack vectors were equally mitigated in the restrictive ACL
configuration.

• Vulnerability Category Distribution: Information disclosure vulnerabilities showed the
highest success rates across configurations, followed by memory exposure, database op-
erations, and authentication bypass.

Table 11. Comparative Security Analysis Based on 31 Security Tests.

Metric

Configuration

Default Password Protected
ACL Protected

(Permissive)
ACL Protected

(Restrictive)

Successful Exploits 23 1 15 0

Success Rate 74.19% 3.23% 48.39% 0.00%

Critical Severity 1 0 0 0

High Severity 8 1 7 0

Medium Severity 7 0 4 0

Low Severity 7 0 4 0

Security Rating Critical Risk Low Risk High Risk Low Risk

These findings challenge the conventional security wisdom that implementing any ACL

mechanism substantially improves security. Our data demonstrates that improperly config-
ured ACLs can create a false sense of security while leaving critical vulnerabilities exposed.

4.6. Research Objectives Addressed

Our empirical analysis directly addresses the overarching goals outlined in the Introduc-
tion, namely: first, validating the defensive impact of password authentication and ACL con-
figurations on Redis injection threats; and second, uncovering remaining vulnerabilities, par-
ticularly those involving Lua script execution under misconfigured access controls. The find-
ings confirm varying levels of protection depending on implementation and highlight critical
risks that persist even under partially secured environments.

4.6.1. Effectiveness of Password and ACL Mitigations

Password protection demonstrated significant effectiveness (96.77% mitigation), but
with a critical authentication bypass vulnerability. ACL effectiveness varied dramatically based
on implementation. Permissive ACLs showed only 51.61% mitigation, worse than password
protection alone. In contrast, restrictive ACLs achieved complete mitigation (100%) against
the specific injection vectors tested in this research and achieved the lowest risk rating by
effectively mitigating vulnerabilities through stringent ACL policies and network isolation,
aligning with recommended security best practices [4], [16], [39]. These findings underscore
the critical need for a multi-layered security approach encompassing robust ACL enforce-
ment, comprehensive password management, and network isolation to effectively protect Re-
dis deployments against contemporary cyber threats, proving the most effective security
mechanism.

4.6.2. Residual Risks Under Misconfigurations

We identified two primary residual risks:

• Authentication Bypass: In password-protected configurations, the ability to remove
password protection through privileged commands

• Command Accessibility: In permissive ACL configurations, excessive command privi-
leges that allow information disclosure, memory manipulation, and data operations
Importantly, even under misconfigured ACLs, Lua script injections were more effec-

tively mitigated than direct command injections, suggesting that Redis's Lua sandbox provides
some protection even with suboptimal configurations.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 569

5. Conclusion and Future Work

Our research makes several significant contributions to the field of NoSQL database
security. Firstly, this study provides the first comprehensive academic evaluation of Redis
injection vulnerabilities across command and Lua script attack vectors in modern Redis ver-
sions (7.4.1), addressing a critical gap in NoSQL security research. Our methodology com-
bines containerization, systematic payload testing, and formal vulnerability scoring to create
a reproducible framework for evaluating NoSQL database security. Secondly, we developed
a comprehensive taxonomy of Redis injection vulnerabilities that categorizes attack vectors
according to their underlying architectural causes. This Redis-specific threat model integrates
Redis's unique architectural characteristics, including its in-memory design and Lua scripting
mechanisms, providing a structured framework for understanding Redis security that was
previously lacking in the literature. Thirdly, our controlled experiments quantified the security
effectiveness of different Redis configurations, revealing that while restrictive ACLs achieve
complete mitigation (0% success rate) within our experimental framework against the tested
payloads, improper ACL implementation can create a false sense of security. This empirical
validation addresses a significant gap in previous Redis security research and demonstrates
that security controls must be implemented appropriately to be effective. Lastly, we discov-
ered that permissive ACL configurations provide substantially weaker protection (48.39%
success rate) than password-only configurations (3.23% success rate). This counterintuitive
finding challenges conventional security assumptions and highlights the critical importance
of proper ACL implementation.

While our study provides valuable understanding of Redis security, several limitations
should be acknowledged. First, our experiments were conducted in a controlled Dockerized
environment that may not fully represent all production deployment scenarios, particularly
those involving complex network architectures or custom Redis modules. Second, our find-
ings are specific to Redis 7.4.1 and may not apply to earlier versions with different security
features or future versions that may address identified vulnerabilities. Thirdly, while our test
suite was comprehensive, it cannot exhaustively cover all possible injection payloads or attack
techniques. Novel attack vectors may emerge that were not captured in our taxonomy.

These limitations consequently highlight several promising avenues for future research.
These include the development of automated tools for discovering novel Redis injection vul-
nerabilities, potentially leveraging techniques such as fuzzing or symbolic execution. Further
research could also focus on a quantitative analysis of the performance impact associated with
different security configurations, aiding organizations in making informed decisions regarding
security-performance trade-offs. Extending the methodology to other NoSQL databases
would enable a comparative analysis of security architectures across different database para-
digms. Research into dynamic ACL systems capable of adapting to evolving threat landscapes
represents another crucial area for developing more robust protection against emerging attack
vectors. Finally, applying formal methods to verify the security properties of Redis's core
components, particularly the Lua scripting engine and ACL implementation, presents a rig-
orous approach to enhancing security assurances.

Redis has become a critical component of modern data infrastructure, powering appli-
cations across industries from e-commerce to healthcare. Its performance advantages have
driven widespread adoption, but our research demonstrates that security considerations must
be prioritized alongside performance to prevent potentially devastating exploitation. The sig-
nificant variations in vulnerability across different Redis configurations highlight the critical
importance of security-conscious deployment practices. In implementing the recommenda-
tions derived from our empirical findings, organizations can substantially reduce their risk
exposure while maintaining Redis's performance advantages. Our research contributes to the
theoretical understanding of NoSQL security architectures and practical knowledge for se-
curing Redis deployments. Hence, we advance the state of database security and protect the
critical data infrastructure that powers modern digital services.

Author Contributions: Conceptualization: M.N.M. and M.E.I.; Methodology: M.N.M.; Soft-
ware: M.N.M.; Validation: M.N.M. and M.E.I.; Analysis: M.N.M.; Investigation: M.N.M.; Re-
sources: M.N.M.; Writing—original draft preparation: M.N.M.; Writing—review and editing:

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 570

M.N.M. and M.E.I.; Supervision: M.E.I.; Project administration: M.N.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to express gratitude to the Department of Computer
Science, Nigerian Defence Academy, Kaduna, for providing us with the necessary support to
conduct the research.

Conflicts of Interest: The authors declare that they have no financial or non-financial inter-
ests that could be perceived as influencing the work described in this manuscript

References

[1] S. Gilbert and N. Lynch, “Perspectives on the CAP Theorem,” Computer (Long. Beach. Calif)., vol. 45, no. 2, pp. 30–36, Feb. 2012,
doi: 10.1109/MC.2011.389.

[2] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz, “Data management in cloud environments: NoSQL and NewSQL
data stores,” J. Cloud Comput. Adv. Syst. Appl., vol. 2, no. 1, p. 22, Dec. 2013, doi: 10.1186/2192-113X-2-22.

[3] H. B. S. Reddy, R. R. S. Reddy, R. Jonnalagadda, P. Singh, and A. Gogineni, “Analysis of the Unexplored Security Issues Common
to All Types of NoSQL Databases,” Asian J. Res. Comput. Sci., pp. 1–12, May 2022, doi: 10.9734/ajrcos/2022/v14i130323.

[4] S. Sicari, A. Rizzardi, and A. Coen-Porisini, “Security&privacy issues and challenges in NoSQL databases,” Comput. Networks, vol.
206, p. 108828, Apr. 2022, doi: 10.1016/j.comnet.2022.108828.

[5] D. Van Landuyt, V. Wijshoff, and W. Joosen, “A study of NoSQL query injection in Neo4j,” Comput. Secur., vol. 137, p. 103590,
Feb. 2024, doi: 10.1016/j.cose.2023.103590.

[6] OWASP Foundation, “OWASP Top Ten,” owaps.org, 2022. https://owasp.org/www-project-top-ten/
[7] S. Patil, M. Rao, L. Misal, D. Phaldesai, and K. Shivsharan, “A Review of the OW ASP Top 10 Web Application Security Risks and

Best Practices for Mitigating These Risks,” in 2023 7th International Conference On Computing, Communication, Control And Automation
(ICCUBEA), Aug. 2023, pp. 1–8. doi: 10.1109/ICCUBEA58933.2023.10392030.

[8] J. L. Carlson, Redis in Action. Manning Publications Co., 2013.
[9] X. Qi, H. Hu, X. Wei, C. Huang, X. Zhou, and A. Zhou, “High Performance Design for Redis with Fast Event-Driven RDMA

RPCs,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
12112 LNCS, 2020, pp. 195–210. doi: 10.1007/978-3-030-59410-7_12.

[10] J. Zablocki, M. Daniel, C. Shantanu, S. Pramod, and L. Jianbo, “Real-time detection and clustering of emerging fraud patterns,”
2021 [Online]. Available: https://patents.justia.com/patent/10938853

[11] DB-Engines, “DB-Engines - Knowledge Base of Relational and NoSQL Database Management Systems,” DB-Engines. 2024.
[Online]. Available: https://db-engines.com/en/

[12] G. Kaur and J. Kaur, “In-Memory Data processing using Redis Database,” Int. J. Comput. Appl., vol. 180, no. 25, pp. 26–31, Mar.
2018, doi: 10.5120/ijca2018916589.

[13] V. C. Hu, “Access control on NoSQL databases,” May 2024. doi: 10.6028/NIST.IR.8504.
[14] X. Chen, J. Jiang, W. Zhang, and X. Xia, “Fault Diagnosis for Open Source Software Based on Dynamic Tracking,” in 2020 7th

International Conference on Dependable Systems and Their Applications (DSA), Nov. 2020, pp. 263–268. doi:
10.1109/DSA51864.2020.00047.

[15] V. Das, Learning Redis. Packt Publishing Ltd, 2015.
[16] Q. Castro, “Security Advisory: CVE-2024-31449, CVE-2024-31227, CVE-2024-31228,” Redis.io, 2024.

https://redis.io/blog/security-advisory-cve-2024-31449-cve-2024-31227-cve-2024-31228/
[17] A. Johns, “Redis Injection Vulnerabilities in LLM-Powered RAG Systems,” Secure Cortex Blog, 2024.

https://blog.securecortex.com/2024/10/large-language-models-injections-in-rag.html
[18] E. Ankomah et al., “A Comparative Analysis of Security Features and Concerns in NoSQL Databases,” in Communications in Computer

and Information Science, vol. 1726 CCIS, 2022, pp. 349–364. doi: 10.1007/978-981-19-8445-7_22.
[19] B. Hou, K. Qian, L. Li, Y. Shi, L. Tao, and J. Liu, “MongoDB NoSQL Injection Analysis and Detection,” in 2016 IEEE 3rd

International Conference on Cyber Security and Cloud Computing (CSCloud), Jun. 2016, pp. 75–78. doi: 10.1109/CSCloud.2016.57.
[20] N. Gupta and R. Agrawal, “NoSQL Security,” in Advances in Computers, vol. 109, Academic Press Inc., 2018, pp. 101–132. doi:

10.1016/bs.adcom.2018.01.003.
[21] V. Sachdeva, “Vulnerability Assesment For Advanced Injection Attacks Against Mongodb,” J. Mech. Contin. Math. Sci., vol. 14, no.

1, pp. 402–413, Feb. 2019, doi: 10.26782/jmcms.2019.02.00028.
[22] S. Dwivedi, R. Balaji, P. Ampatt, and S. D. Sudarsan, “A Survey on Security Threats and Mitigation Strategies for NoSQL

Databases,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 14424 LNCS, 2023, pp. 57–76. doi: 10.1007/978-3-031-49099-6_4.

[23] D. Fiser, “More Than 8,000 Unsecured Redis Instances Found in the Cloud,” Trend Micro, 2020.
https://www.trendmicro.com/en_us/research/20/d/more-than-8-000-unsecured-redis-instances-found-in-the-
cloud.html?_ga=2.23954494.54084514.1736434217-1683098876.1736259621

[24] C. Carlos, M. Steven, and R. Peter, Database System: Design, Implementation, and Management. 2018.
[25] T. Macedo and F. Oliviera, Redis Cookbook, First. O’Reilly Media Inc,., 2011.
[26] R. Rao, “What Databaseless (DBLess) Architecture Is—and Why It’s the Future,” Redis.io. 2021. [Online]. Available:

https://redis.io/blog/dbless-architecture-and-why-its-the-future/
[27] D. Eddelbuettel, “Redis for Market Monitoring,” arXiv. Mar. 15, 2022. [Online]. Available: http://arxiv.org/abs/2203.08323

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 571

[28] G. Muradova, M. Hematyar, and J. Jamalova, “Advantages of Redis in-memory database to efficiently search for healthcare medical
supplies using geospatial data,” in 2022 IEEE 16th International Conference on Application of Information and Communication Technologies
(AICT), Oct. 2022, pp. 1–5. doi: 10.1109/AICT55583.2022.10013544.

[29] R. Ajeet, “Top 5 Reasons Why DevOps Teams Love Redis Enterprise,” Redis.io, 2020. https://redis.io/blog/why-devops-teams-
love-redis-enterprise/

[30] T. Fiebig, A. Feldmann, and M. Petschick, “A One-Year Perspective on Exposed In-memory Key-Value Stores,” in Proceedings of the
2016 ACM Workshop on Automated Decision Making for Active Cyber Defense, Oct. 2016, pp. 17–22. doi: 10.1145/2994475.2994480.

[31] R. A. G. Sanchez, D. J. M. Bernal, and H. D. J. Parada, “Security assessment of Nosql Mongodb, Redis and Cassandra database
managers,” in 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Sep. 2021, pp. 1–7. doi:
10.1109/CONIITI53815.2021.9619597.

[32] Asadulla Khan Zaki and Indiramma M., “A novel redis security extension for NoSQL database using authentication and
encryption,” in 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Mar. 2015, pp. 1–
6. doi: 10.1109/ICECCT.2015.7226101.

[33] A. Costin, “Lua Code: Security Overview and Practical Approaches to Static Analysis,” in 2017 IEEE Security and Privacy Workshops
(SPW), May 2017, vol. 2017-Decem, pp. 132–142. doi: 10.1109/SPW.2017.38.

[34] A. Stasinopoulos, C. Ntantogian, and C. Xenakis, “Commix: automating evaluation and exploitation of command injection
vulnerabilities in Web applications,” Int. J. Inf. Secur., vol. 18, no. 1, pp. 49–72, Feb. 2019, doi: 10.1007/s10207-018-0399-z.

[35] S. Kairoju, R. Sultana, and P. Danidharia, “Security Audit of NoSQL DBMS,” ERA: Education and Research Archive. 2021. [Online].
Available: https://era.library.ualberta.ca/items/6b114eb6-3c87-4db5-8571-1cb3a5fb6cb1/download/13d0ae5c-57b6-4cc4-9f12-
5e66a706b579

[36] R. M. A. and N. H. Ashwaq A. Alotaibi, Reem M. Alotaibi and Nermin Hamza, Ashwaq A. Alotaibi, “Access Control Models in
NoSQL Databases: An Overview,” J. King Abdulaziz Univ. Comput. Inf. Technol. Sci., vol. 8, no. 1, pp. 1–9, Mar. 2019, doi:
10.4197/Comp.8-1.1.

[37] U. Saxena and S. Sachdeva, “An Insightful View on Security and Performance of NoSQL Databases,” in Communications in Computer
and Information Science, vol. 799, 2018, pp. 643–653. doi: 10.1007/978-981-10-8527-7_54.

[38] K. Fahd, S. Venkatraman, and F. Khan Hammeed, “A Comparative Study of NOSQL System Vulnerabilities with Big Data,” Int.
J. Manag. Inf. Technol., vol. 11, no. 4, pp. 1–19, Nov. 2019, doi: 10.5121/ijmit.2019.11401.

[39] A. Nikiforova, A. Daskevics, and O. Azeroual, “NoSQL Security: Can My Data-driven Decision-making Be Influenced from
Outside?,” in Big Data and Decision-Making: Applications and Uses in the Public and Private Sector, Emerald Publishing Limited, 2023, pp.
59–73. doi: 10.1108/978-1-80382-551-920231005.

[40] W. G. J. Halfond, J. Viegas, and A. Orso, “A Classification of SQL Injection Attacks and Countermeasures,” College of Computing
Georgia Institute of Technology, 2008. https://faculty.cc.gatech.edu/~orso/papers/halfond.viegas.orso.ISSSE06.pdf

[41] N. Yaakov and O. Itach, “New Redis Backdoor Malware,” Aqua Nautilus Discovers Redigo, 2022.
https://www.aquasec.com/blog/redigo-redis-backdoor-malware/

[42] National Institute of Standards Technology (NIST), “NVD - CVE-2022-0543,” National Vulnerability Database (NVD), 2022.
https://nvd.nist.gov/vuln/detail/cve-2022-0543

[43] National Institute of Standards Technology (NIST), “NVD - CVE-2024-46981,” National Vulnerability Database, 2024.
[44] National Institute of Standards Technology (NIST), “NVD - CVE-2021-29477,” National Vulnerability Database, 2021.

https://nvd.nist.gov/vuln/detail/cve-2021-29477
[45] National Institute of Standards Technology (NIST), “NVD - CVE-2021-32762,” National Vulnerability Database, 2021.

https://nvd.nist.gov/vuln/detail/cve-2021-32762
[46] D. Fiser and J. Horejsi, “Exposed Redis Instances Abused for Remote Code Execution, Cryptocurrency Mining,” Trend Micro, 2020.

https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-
cryptocurrency-mining.html

[47] National Institute of Standards Technology (NIST), “NVD - CVE-2021-32627,” National Vulnerability Database, 2021.
https://nvd.nist.gov/vuln/detail/cve-2021-32627

[48] National Institute of Standards Technology (NIST), “NVD - CVE-2020-4670,” National Vulnerability Database, 2020.
https://nvd.nist.gov/vuln/detail/cve-2020-4670

[49] Forum of Incident Response and Security Teams (FIRST), “Common Vulnerability Scoring System version 3.1: Specification
Document,” first.org, 2019. https://www.first.org/cvss/v3-1/specification-document

[50] W. H. Douglas and R. Seiersen, How to Measure Anything in Cybersecurity Risk. John Wiley & Sons, Inc, 2023. [Online]. Available:
https://www.wiley.com/en-us/How+to+Measure+Anything+in+Cybersecurity+Risk%2C+2nd+Edition-p-9781119892304

