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Abstract: The contemporary landscape of data management, marked by an unprecedented scale and 

velocity of data, has spurred the widespread adoption of NoSQL databases, prioritizing scalability and 

performance over traditional relational constraints. While offering significant flexibility, this paradigm 

shift introduces complex cybersecurity challenges, notably query injection vulnerabilities, which are 

consistently ranked among the top web application security risks. Redis, a leading in-memory key-value 

store powering critical infrastructure globally, presents a unique security profile due to its architectural 

design and features like Lua scripting. Despite its prevalence, a comprehensive academic evaluation of 

Redis injection attack vectors remains understudied. This study addresses this gap by systematically 

evaluating command and Lua script injection vulnerabilities in Redis version 7.4.1 across controlled 

configurations: default, password-protected, and ACL-secured environments. We quantify vulnerabil-

ity risk and empirically validate mitigation strategies by employing a Dockerized testing framework, 

Python-driven exploit simulations, and CVSS v3.1 scoring. Our findings reveal critical weaknesses in 

default and permissively configured environments and demonstrate that restrictive Access Control 

Lists (ACLs), adhering to the principle of least privilege, provide complete mitigation against the spe-

cific injection vectors evaluated in our controlled experimental setup. We propose a Redis-specific 

threat taxonomy and provide empirically validated recommendations for securing Redis deployments, 

emphasizing layered security controls and proper ACL implementation. This research contributes the 

first systematic evaluation of modern Redis injection vulnerabilities and highlights the critical im-

portance of security-conscious configurations to protect vital data infrastructure. 

Keywords: Access Control Lists; Command Injection; Database Security; Lua Script Injection; 

NoSQL Injection; Redis; Vulnerability Assessment. 

 

1. Introduction 

The contemporary landscape of data management has undergone a transformative shift, 
characterized by unprecedented scale, volume, and frequency of data collection and pro-
cessing. This technological evolution has catalyzed the emergence of NoSQL databases, 
which strategically relax traditional transactional constraints to optimize horizontal scalability 
and database [1], [2]. Unlike traditional relational databases, NoSQL technologies encompass 
diverse data models, including key-value stores, columnar databases, document databases, 
and graph-oriented databases, each offering specialized query languages and architectural ca-
pabilities [3]. While this technological diversification enables unprecedented computational 
flexibility, it simultaneously introduces complex cybersecurity challenges, particularly con-
cerning query injection vulnerabilities [4], [5]. Injection represents a sophisticated class of 
security attacks wherein maliciously crafted commands are surreptitiously introduced and ex-
ecuted within database systems [5]. The critical nature of these vulnerabilities is underscored 
by the OWASP Top 10 Web Application Security Risks, which consistently ranks injection 
attacks among the top 3 web application security concerns [6], [7]. 
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Among NoSQL database technologies, key-value stores represent a particularly intri-
guing architectural paradigm. These databases store data as key-value pairs primarily in 
memory, offering rapid, secure, and cost-effective information access with high availability 
and durability [8]–[10]. Redis is a highly mature and widely adopted key-value database, cor-
roborated by its consistently high ranking on platforms such as DB-Engines. As of May 2025, 
DB-Engines places Redis as the leading (#1) Key-value store and the #7 most popular data-
base management system overall, with a score of 152.19. This positions it as a critical system 
within the NoSQL landscape, where it distinguishes itself through remarkable versatility and 
performance, even when compared to other leading NoSQL databases like MongoDB 
(ranked #5 overall and #1 Document store with a score of 402.51) [11]. The DB-Engines 
ranking methodology considers factors such as search engine interest, frequency of technical 
discussions, job offers, and social media presence, providing a strong indicator of industry 
adoption and relevance, thus validating the choice of Redis as a focal system for this study. 
Redis has distinguished itself through remarkable versatility and performance, powering crit-
ical infrastructure for 80% of Fortune 500 companies, including real-time analytics, fraud 
detection, and dynamic session management [4], [8]–[10], [12]. 

Despite its widespread adoption, Redis’s architectural design is simultaneously its 
strength and potential vulnerability [4], [13]. To maintain all data in memory, Redis ensures 
exceptional speed and reliability [4], [12]. However, this in-memory design introduces inher-
ent risks, necessitating observability solutions to monitor system metrics and mitigate poten-
tial failures [14]. Like other NoSQL databases, Redis presents unique security vulnerabilities, 
particularly concerning injection attacks. These vulnerabilities stem from fundamental archi-
tectural characteristics allowing unauthorized data manipulation [8], [15]. Redis's command 
structure, which enables direct operations on key-value pairs using commands like GET, SET, 
and DEL, differs markedly from traditional SQL query mechanisms, creating distinctive in-
jection risk profiles [8], [15]. Redis can be particularly susceptible to injection attacks, with 
potential consequences ranging from data corruption to remote code execution [16], [17]. 
Researchers have identified two primary injection attack vectors: command injection and Lua 
script injection, with the latter being particularly relevant to Redis environments. By default, 
Redis’s configuration can allow credential-free access, exponentially increasing potential ex-
ploitation risks [18]. 

While extensive research has been conducted on injection vulnerabilities in relational 
and document databases like MongoDB and CouchDB [19]–[22], a comprehensive investi-
gation into key-value database injection risks remains understudied despite their unique risk 
profile. Redis’s lack of schema enforcement and default permissive configurations expose 
critical attack surfaces: unauthenticated access allows adversaries to execute arbitrary com-
mands or weaponize Lua scripts for remote code execution [16]. Recent incidents, such as 
cryptocurrency mining via exposed Redis instances [23], underscore the need to address these 
risks. This study aims to address this critical research gap by extensively evaluating injection 
attack vectors targeting Redis platforms through a controlled, multi-configuration evaluation 
of Redis injection vectors. We propose two research objectives: first, to assess the effective-
ness of password protection and Access Control Lists (ACLs) in mitigating command and 
Lua script injection attacks targeting Redis. Second, to identify and evaluate the residual se-
curity risks that persist, particularly in dynamically constructed Lua scripts, when Redis ACLs 
are misconfigured. 

Our methodology combines Dockerized Redis instances, a Python-driven systematic 
suite of exploit simulations, and CVSS v3.1 scoring to quantify vulnerabilities across three 
configurations: default (no security), password-protected, and ACL-secured environments. 
This research makes the following key contributions: 

• We provide the first systematic academic evaluation of Redis injection vulnerabilities 
across the command and Lua script attack vectors in modern Redis versions (7.4.1), 
addressing a critical gap in NoSQL security research. 

• We propose a novel Redis-specific threat model that integrates Redis’s unique architec-
ture (e.g., in-memory design, Lua scripting risks) to guide future research and mitigation 
strategies. 

• We empirically validate the effectiveness of ACLs in mitigating injection attacks in ex-
ploit success rates compared to other configurations. 
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The structure of this article reflects the systematic progression of the study: Section 2 
reviews the body of related work, Section 3 elaborates on the research methodology, Section 
4 investigates specific injection scenarios, and Section 5 discusses findings, contributions, and 
future research directions. 

2. Literature Review 

This section delves into the security implications of NoSQL databases, specifically fo-
cusing on Redis and its vulnerability to injection attacks. We begin with an overview of 
NoSQL databases and a detailed discussion of Redis’s architecture and security challenges. 
Finally, we critique prior work and highlight the gaps this study addresses. 

2.1. Overview of NoSQL Databases 

The evolution of data management technologies has been significantly influenced by the 
emergence of NoSQL databases, which represent a paradigm shift from traditional relational 
database management systems (RDBMS) and enable flexible, high-performance solutions for 
managing unstructured and semi-structured data [4], [13]. They are categorized into four pri-
mary types based on their data storage models: key-value, document, columnar, and graph 
databases, as shown in Table 1[24]. NoSQL databases have become essential in big data and 
real-time applications, offering horizontal scalability, schema flexibility, and enhanced perfor-
mance [8], [9]. However, their flexibility and scalability come at the cost of reduced inherent 
security features [3], [18]. Research has shown that many NoSQL systems, including Redis, 
prioritize performance and schema-less data storage over security, making them susceptible 
to attacks [3]. For example, MongoDB and CouchDB have been extensively studied for in-
jection vulnerabilities [20], [22], but key-value stores like Redis remain under-researched, par-
ticularly in the context of modern attack vectors. 

Table 1. Types of NoSQL Databases. 

Type Description Examples 

Key-Value Stores data as key-value pairs, ideal for caching and ses-
sion management. 

Redis, DynamoDB 

Document Handles semi-structured data in JSON or BSON formats. MongoDB, CouchDB 

Columnar Organizes data into columns for analytical processing. Cassandra, HBase 

Graph Specialized in managing relationships between data points. Neo4j, ArangoDB 

 
While each NoSQL category presented in Table 1 offers unique advantages and faces 

distinct security considerations, this study focuses on Redis, a prominent example from the 
key-value store category. Although other key-value databases such as DynamoDB share ar-
chitectural similarities, Redis was selected for its widespread adoption (powering 80% of For-
tune 500 companies [12], open-source transparency, and documented prevalence in security-
critical applications [8], [15]. Furthermore, Redis exhibits a higher incidence of reported in-
jection vulnerabilities than proprietary alternatives [18], making it an ideal candidate for em-
pirical security analysis. 

2.2 Redis NoSQL Database 

Redis, a versatile open-source in-memory key-value data store, is renowned for its ex-
ceptional performance and flexibility [13]. It supports a wide range of data structures, includ-
ing strings, hashes, lists, sets, and sorted sets, enabling it to handle diverse applications [8], 
[15]. Redis can execute high-speed operations by capitalizing on its in-memory architecture, 
making it ideal for use cases such as caching, distributed locking, and session management 
[13], [25]. 

Redis leverages a single-threaded architecture to minimize context switching and opti-
mize CPU cache utilization [14]. Figure 1 illustrates the fundamental components of Redis's 
primary architecture. At its core, Redis operates on a client-server model, the Redis client 
initiates requests for data operations, which are then processed by the Redis server [26]. A 
key aspect of Redis's renowned performance is its Redis cache, which signifies that data is 
predominantly stored and managed directly in the system's main memory. This in-memory 
storage allows for exceptionally fast read and write operations, as it avoids the latency typically 



Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Musa and Irhebhude. 556 
 

 

associated with disk-based storage. The data structures (such as Strings, Lists, Hashes, Sets, 
and Sorted Sets, as indicated in Fig. 1) are all held within this in-memory cache, enabling the 
rapid data manipulation and retrieval, making Redis ideal for applications demanding low 
latency and high throughput [8]. Its master-slave replication architecture also ensures high 
availability and scalability, making it suitable for high-concurrency environments [8], [15]. Be-
yond basic key-value storage, Redis's versatility extends to caching systems, distributed lock-
ing, real-time messaging, and domain-specific applications like geographic data management 
and healthcare data retrieval [25], [27], [28]. 

 

Figure 1. Redis Primary Architecture [26] 

Redis’s dominance in modern infrastructure is evident from its consistent ranking as a 
top-10 database system globally [11] and its adoption by 80% of Fortune 500 companies for 
mission-critical applications such as real-time analytics, fraud detection, and dynamic session 
management [9], [12]. Redis powers over 1.5 million active deployments worldwide, handling 
over 1.2 million operations per second in high-traffic environments like e-commerce and 
healthcare systems [9], [29]. This widespread adoption and its default exposure risks render 
Redis a high-priority target for security analysis. Also, its powerful Lua scripting can be ex-
ploited by malicious actors to inject malicious code and compromise the database [16], [17]. 
Additionally, misconfigurations can expose Redis to various attacks, including command in-
jection [30], [31]. Recent vulnerabilities, such as CVE-2023-28859 and CVE-2024-31227, 
highlight the ongoing risks associated with Redis deployments. These vulnerabilities under-
score the need for rigorous security analysis and mitigation strategies. To address some of 
these security challenges, researchers are investigating various mitigation strategies, such as 
input validation, encryption, and static analysis tools implemented in later versions of Redis 
[32]–[35]. 

2.3. Related Works 

The rapid evolution of database technologies has precipitated a critical need for com-
prehensive security assessments, particularly in NoSQL databases [3]. Early research exposed 
the fundamental security challenges inherent in these dynamic database systems, marking a 
pivotal moment in understanding the divergence between traditional SQL-based and NoSQL 
database security paradigms [4], [13]. This demonstrated that the inherent flexibility of 
NoSQL databases creates unique vulnerability landscapes that traditional security mecha-
nisms fail to address adequately [4]. 

Different NoSQL database architectures necessitate a discerning approach to security 
analysis. Database types, from document-oriented systems like MongoDB to key-value stores 
like Redis, present distinct security challenges [3], [4]. Alotaibi et al. [36] emphasized the glar-
ing deficiencies in access control mechanisms across these platforms, highlighting the urgent 
need for developing sophisticated, granular protection strategies for sensitive data. Their re-
search underscored a fundamental gap in existing security frameworks, which include the lack 
of fine-grained access controls that can adapt to the dynamic nature of NoSQL database 
architectures. 

Empirical investigations have systematically mapped the complex vulnerability landscape 
across NoSQL database types. Reddy et al. [3] conducted a comprehensive analysis that re-
vealed various security vulnerabilities affecting various NoSQL database types. Their research 
uncovered that code execution vulnerabilities are particularly pervasive, affecting document, 
key-value, graph, and multi-model databases with alarming consistency. Moreover, the study 
revealed that Denial of Service (DoS) attacks and Cross-Site Scripting (XSS) vulnerabilities 

Redis 
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Client

Redis 

Cache

Data Structures 
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demonstrate significant variations across database architectures, with document, key-value, 
and column-based databases displaying heightened susceptibility. 

The unique case of the Redis database offers a particularly intriguing case study in 
NoSQL database security dynamics. Recent vulnerabilities, including memory buffer over-
flow issues, further underscore the importance of rigorous security analysis for this widely 
adopted Redis data store [3]. Unlike many NoSQL databases, Redis initially demonstrated a 
more resilient architectural approach attributed to its binary-safe protocol with prefixed-
length strings, which inherently mitigates traditional string escaping vulnerabilities common 
in injection attacks [37]. However, subsequent research by Kairoju et al. [35] revealed that 
while Redis injection using the standard library is difficult, default configurations still pose 
significant security risks, particularly regarding authentication and network access, challenging 
the initial perception of Redis as an inherently secure platform. The study also highlighted the 
inherent risks associated with Redis's default password handling, including storing passwords 
in plaintext without limiting rates. This emphasizes the critical need for implementing strong 
passwords and utilizing encrypted authentication mechanisms to enhance security. 

Fahd et al. [38] evaluated the security vulnerabilities inherent in NoSQL database sys-
tems, particularly in Big Data management. The paper focused on built-in security mecha-
nisms, encryption, authentication, authorization, and auditing vulnerabilities, comparing the 
risk levels across popular NoSQL systems. While the paper highlighted a potential injection 
attack scenario in older Redis versions, it is important to note that modern Redis implemen-
tations have implemented robust security measures to mitigate such vulnerabilities. These 
safeguards include strict type checking and input validation, which prevent unexpected argu-
ment conversions and malicious input manipulation. 

A critical emerging security concern involves the integration of Lua scripting in Redis. 
Castro [16] highlighted the emerging attack vector where malicious actors could exploit Lua 
script vulnerabilities to execute unauthorized commands. Previous investigations by Costin 
31 and Sanchez et al.29 provided preliminary observations but lacked the systematic experi-
mental validation necessary to understand these risks. 

Zaki et al. [32] were among the earliest researchers to propose innovative security exten-
sions specifically for key-value NoSQL, demonstrating a proactive approach to addressing 
inherent vulnerabilities. Their research focused on enhancing authentication and encryption 
mechanisms, proposing an algorithm that improved data confidentiality and integrity and de-
livered faster encryption and decryption performance compared to existing solutions. 
Ankomah et al.18 found that Redis's default configuration allows unauthenticated access, sig-
nificantly increasing exploitation risk. Their NoSQL investigation revealed that the recent 
version of Redis uses ACLs for authentication. Hu [13] broadened the security discussion by 
promoting a comprehensive approach to safeguarding NoSQL databases. The study empha-
sized three critical security dimensions: protecting data at rest, securing data in transit, and 
developing sophisticated injection attack mitigation strategies. This approach acknowledges 
the complex interplay of security challenges in contemporary database environments. 

Nikiforova et al. [39] conducted an empirical review by scanning over 15,000 IP ad-
dresses to map database vulnerabilities. The research evaluated existing literature on Open 
Source Intelligence (OSINT) and Internet of Things Search Engines (IoTSE) to collect and 
analyze publicly available data. It also discusses the implications of these findings for both 
individual organizations and broader networks. The study identified that poorly protected 
databases are accessible to external actors, posing serious data integrity and security risks. The 
study’s vulnerability analysis highlights the need for continuous security assessment. Redis 
was found to have weak authentication due to weak passwords, insufficient intrusion protec-
tion, and the potential for sensitive data exposure. 

Recently, researchers have concentrated on conducting in-depth analyses of injection 
attacks targeting specific NoSQL databases. Landuyt et al. [5] investigated query injection 
vulnerabilities in graph-oriented databases, specifically Neo4j. The research employed a com-
bination of manual verification of source code and automated injection test cases to assess 
the residual risks associated with query injection in Neo4j. It examined parameterized queries 
established at development time and dynamically constructed queries executed at runtime. 
The findings indicated that parameterization can effectively mitigate certain injection risks, 
but dynamic query construction remains a significant security challenge. While static queries 
provide a more secure approach, they may not be suitable for all use cases, necessitating a 
balanced approach combining security and flexibility.  
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Dwivedi et al. [22] further expanded the understanding of NoSQL security by conduct-
ing an extensive survey on NoSQL injection in MongoDB. The research employed a system-
atic review of existing literature, including 18 quality research papers, MongoDB manuals, 
and real-world incident analyses. It examined various security breaches, current security 
measures, and data masking techniques. The study identified several critical vulnerabilities in 
MongoDB, including inadequate authentication and authorization mechanisms, exposure of 
REST APIs, and susceptibility to NoSQL injection attacks. The study emphasized the im-
portance of implementing strong access controls, encryption protocols, input validation 
mechanisms, and regular security audits as fundamental defensive strategies. 

A notable gap in current research lies in the comprehensive analysis of injection attacks 
specifically targeting Redis. While previous studies have touched upon Lua scripting vulnera-
bilities [31], [33], a systematic experimental validation is still lacking. This study aims to fill 
this gap by conducting a structured investigation into Command and Lua script injection 
vulnerabilities. Furthermore, the study examines the impact of default configuration weak-
nesses, which have been identified as significant security risks in comparative studies but often 
lack empirical validation. The research will provide concrete evidence of their potential impact 
by testing these vulnerabilities in controlled environments. 

3. Methodology 

This section details our systematic approach to evaluating Redis injection vulnerabilities 
across different security configurations. We employ a rigorous experimental framework de-
signed to ensure reproducibility, validity, and comprehensive assessment of both command 
and Lua script injection vectors. 

 

Figure 2. Research stages 

This approach extends traditional penetration testing methodologies by incorporating 
formal vulnerability scoring (CVSS v3.1) and analysis of exploitation success rates across mul-
tiple configurations. The framework systematically compares security configurations across 
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the vulnerability payloads while maintaining experimental validity through containerized en-
vironments that eliminate confounding variables. Figure 2 illustrates this framework, which 
consists of four interconnected phases: environment preparation, vulnerability testing, secu-
rity assessment, and testing protocols. 

3.1. Experimental Environment 

To ensure reproducibility and isolation, we implemented a Dockerized testing environ-
ment that simulates real-world Redis deployments while controlling for external variables. 
Table 2 details the technical specifications of our experimental environment. 

Table 2. Experimental Environment Specifications. 

Component Specification Purpose 

Host System Ubuntu 22.04 LTS Base operating system 

Virtualization Docker 24.0.5 Container orchestration 

Redis Version 7.4.1 (latest stable) Target database 

Testing Framework Python 3.12 with redis-py 5.0.1 Automation and payload delivery 

Network Configuration Isolated bridge network Prevent external interference 

Monitoring Tools Prometheus 2.45.0 Performance and behavior monitoring 

Analysis Environment Jupyter Notebook 7.0.3 Data processing and visualization 

 
This environment design addresses a critical limitation in previous Redis security studies, 

which often tested older versions (≤6.0) that lack modern security features like ACLs [18]. By 
testing against Redis 7.4.1, our findings reflect the current security posture of production 
Redis deployments. 

3.2. Redis Configuration Scenarios 

To evaluate the effectiveness of different security controls, we tested four distinct Redis 
configurations that represent common deployment scenarios in production environments: 

Table 3. Redis Configuration Scenarios. 

Configuration Description Security Features Real-world Parallel 

Default No authentication or 
ACLs 

Protected-mode=yes (localhost 
only) 

Development environ-
ments 

Password-
Protected 

Strong password      
authentication 

requirepass="StrongPass-
word123!" 

Legacy production 
systems 

Permissive ACL ACL with broad      
permissions 

ACL user with +@all permis-
sions 

Transitional deploy-
ments 

Restrictive ACL Principle of least     
privilege 

ACL user with minimal com-
mand categories 

Hardened production 
systems 

 
As depicted in Table 3, each configuration was implemented as a separate Docker con-

tainer with identical Redis versions and system resources, ensuring that observed security 
differences resulted solely from the applied security controls. The Docker Compose config-
uration files and container initialization scripts are available in our public repository to facili-
tate the reproduction of our experiments. 

3.3. Taxonomy of Redis Injection Vulnerabilities 

To analyze Redis injection vulnerabilities, we propose a taxonomy that extends tradi-
tional injection classification frameworks [40] to accommodate Redis's unique architecture. 
Table 4 presents this taxonomy with representative payloads and associated CVEs. This tax-
onomy provides a structured framework for analyzing Redis vulnerabilities that previous re-
search has lacked. Prior work cataloged individual vulnerabilities but failed to develop a com-
prehensive classification system that captures the relationships between attack vectors and 
their underlying architectural causes [31]. 
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Table 4. Taxonomy of Redis Injection Vulnerabilities. 

Category Attack Vector Example Payload Impact CVE Reference 

Command 
Injection 

Information Disclosure CONFIG GET * Reveals sensitive configuration CVE-2023-28859 

Authentication Bypass CONFIG SET requirepass "" Removes password protection CVE-2021-32627 

Data Manipulation FLUSHALL Destroys all databases - 

ACL Manipulation ACL SETUSER default on nopass 
+@all 

Grants unrestricted access CVE-2024-31227 

Lua Script 
Injection 

Sandbox Escape EVAL "return io.popen('id'):read('*a')" 
0 

Executes arbitrary OS com-
mands 

CVE-2022-0543 

Memory Disclosure EVAL "return redis.call('MEMORY', 
'MALLOC-STATS')" 0 

Reveals memory allocation de-
tails 

- 

Command Chaining EVAL "return redis.call('CONFIG', 
'SET', 'requirepass', '')" 0 

Executes privileged commands CVE-2023-28425 

Memory  
Manipulation 

Resource Exhaustion SET x "A"*1000000 Consumes excessive memory CVE-2023-28856 

Heap Corruption Malformed protocol packets Crashes server or enables code 
execution 

CVE-2021-29477 

 

3.3.1. Injection Vector Testing Methodology 

We developed a comprehensive test suite of 31 injection payloads across two primary 
attack vectors: command injection and Lua script injection. These payloads were systemati-
cally derived from three authoritative sources: 

• Official Redis documentation and command references 

• CVE records and security advisories (2020-2024) 

• Real-world exploitation techniques documented in security research 
The payloads were categorized according to our Redis-specific threat taxonomy (Table 

4) to ensure comprehensive attack surface coverage. Table 5 provides representative examples 
from our test suite. 

Table 5. Sample injection test cases. 

Injection Type Feature Payload Example 

Command Injection Information 
Disclosure 

"INFO", "CLIENT LIST", "CONFIG GET *", "SCAN 0", 
"CONFIG GET protected-mode", "CONFIG GET require-

pass" 

Command Injection System    
Commands 

"EVAL 'return io.popen("id"):read("*a")' 0", 

"EVAL 'return io.popen("ls -la /"):read("*a")' 0", 

"EVAL 'return io.popen("whoami"):read("*a")' 0" 

Command Injection Memory     
Exposure 

"MEMORY DOCTOR", "MEMORY MALLOC-STATS", 
"MEMORY PURGE", "SET large_key {'A' * 1000000}" 

Command Injection Database    
Operations 

"FLUSHALL", "FLUSHDB", "KEYS *", "DEL *" 

Command Injection Authentication 
Bypass 

"CONFIG SET requirepass ''" 

Command Injection ACL Bypass "ACL SETUSER default on nopass +@all" 

Lua Script Injection System     
Command   
Execution 

"local os = require('os'); return os.execute('id')", "return 
io.popen('whoami'):read()", "return io.popen('ls -la'):read()" 

Lua Script Injection Information 
Disclosure 

"return redis.call('INFO')", "return redis.call('CONFIG', 
'GET', '*')", "local acl = redis.call('ACL', 'LIST'); return acl" 

Lua Script Injection Memory     
Exposure 

"local t = {}; for i=1,1000000 do t[i] = i end; return #t", "re-
turn redis.call('MEMORY', 'MALLOC-STATS')", "return re-

dis.call('MEMORY', 'DOCTOR')" 

Lua Script Injection Database    
Operations 

"return redis.call('KEYS', '*')", "return redis.call('DBSIZE')", 
"return redis.call('LASTSAVE')" 
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Table 5 demonstrates the diverse scope of injection type, covering Redis-specific func-

tionalities. The 31 injection payloads evaluated in this study were systematically curated to 
ensure representativeness and practical relevance to real-world Redis deployments. Our meth-
odology prioritized payloads with documented exploitation in security and penetration testing 
frameworks, ensuring alignment with observed attacker behaviors. We stratified payloads 
across its core functional domains command, and Lua scripting to map Redis's attack surface. 
Technical diversity was enforced by selecting payloads that exploit distinct mechanisms, such 
as protocol-level injections, script sandbox escapes, and privilege escalation, rather than re-
dundant syntactic variations. Collectively, these payloads account for a high percentage of 
Redis-specific injection CVEs (2018–2024, per NIST NVD) and are derived from authorita-
tive sources, including Redis’s security advisories, peer-reviewed exploit databases, and indus-
try penetration testing reports.  

The complete test suite will enable other researchers to extend test cases or modify our 
experiments. The payloads crafted for each feature are discussed as follows: 

• Information Disclosure: Information disclosure commands such as INFO, CLIENT 
LIST, CONFIG GET *, and SCAN 0 were selected to test the server's exposure to 
unauthorized information access. These commands provide critical details about server 
configuration, connected clients, and operational status [41]. For example, the payload 
CONFIG GET requirepass identifies if password protection is enabled, while CONFIG 
GET protected-mode checks for secure configuration defaults. These commands repli-
cate reconnaissance techniques attackers use to gather intelligence, which is often the 
first step in planning an attack. Testing these vulnerabilities is essential for diagnosing 
security misconfigurations that could lead to unauthorized access or data leaks. Also, it 
reinforces the importance of strict access control and script execution permissions in 
Redis environments. This is further underscored by real-world vulnerabilities like CVE-
2023-28859, where attackers can get sensitive information to launch further attacks. 

• System Commands: Lua script payloads, such as EVAL 'return io.popen("id"): 
read("*a")' 0, exploit Redis's scripting capabilities to execute system commands. This 
feature was chosen to assess potential vulnerabilities leading to remote code execution 
(RCE) and because Lua scripts allow execution of commands at the system level, which, 
if exploited, can lead to full system compromise [16], [42], [43]. Such exploits, if success-
ful, can result in full system compromise, making this a critical security concern. The 
relevance of these tests is underscored by real-world vulnerabilities like CVE-2022-0543 
[42], where attackers leveraged similar mechanisms. Testing these scenarios validates the 
server's ability to prevent unauthorized command execution and helps identify if Redis 
securely limits Lua's ability to interact with the underlying operating system. 

• Memory Exposure: Payloads like MEMORY DOCTOR, MEMORY MAL-LOC-
STATS, MEMORY PURGE, STRALGO LCS, and SET large_key {'A' * 1000000} tar-
get Redis's memory management mechanisms to cause buffer overflow. These features 
were chosen based on their potential to expose vulnerabilities leading to buffer over-
flows, denial-of-service (DoS) attacks, or information leakage through memory diagnos-
tics [16]. These tests are crucial for identifying vulnerabilities that may lead to denial-of-
service (DoS) attacks, information leakage through memory diagnostics, or remote code 
execution. Evaluating Redis's handling of memory-intensive operations ensures resili-
ence under stress and highlights areas that may require optimization or stricter access 
controls. A real-world vulnerability test case, CVE-2021-29477 [44] and CVE-2021-
32762 [45], results in the corruption of the heap.  

• Database Operations: Commands such as FLUSHALL, KEYS *, DBSIZE, and DEL * 
assess risks associated with unauthorized database manipulations. These features were 
chosen for their direct impact on data integrity and availability, as misuse of these com-
mands can delete or corrupt critical data [23], [46]. Testing these features is vital for 
environments where Redis is used as a primary datastore, ensuring the robustness of 
access controls, protection against malicious actions, and restricting unauthorized access 
to database contents via scripts. This is particularly important in multi-tenant environ-
ments or when Redis is used as a caching layer for sensitive data. 
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• Authentication Bypass: Testing with payloads like CONFIG SET requirepass evaluates 
the robustness of password-based security mechanisms [23]. This feature replicates sce-
narios where attackers attempt to disable or override authentication requirements. Given 
the criticality of authentication in securing Redis servers, this test assesses whether the 
server can maintain its security posture even in the face of misconfigurations or exploits 
targeting authentication protocols. Some real-world vulnerabilities related to this feature 
include CVE-2021-32627 [47], CVE-2020-4670 [48], etc. 

• ACL Bypass: The command ‘ACL SETUSER default on nopass +@all’ was selected to 
test the enforcement of ACLs in Redis. This payload evaluates the integrity of Redis's 
ACL implementation by attempting to grant full permissions to the default user without 
a password [16]. Such a vulnerability can be found on CVE-2024-31227 [16]. Ensuring 
that ACLs cannot be bypassed is particularly critical in environments that rely on them 
as the primary access control mechanism. 

3.4. Testing Protocol 

We implemented a rigorous testing protocol to ensure methodological consistency 
across all experiments: 

• Container Initialization: Each Redis configuration was deployed in a fresh Docker con-
tainer to prevent cross-contamination between tests. 

• Baseline Verification: Before injection testing, we verified that each configuration oper-
ated as expected by performing standard Redis operations. 

• Automated Testing: Python scripts systematically executed each payload against each 
configuration, recording success/failure status, error messages, and execution time. 

• Result Validation: Each successful exploitation was manually verified to confirm the vul-
nerability and rule out false positives. 

• Configuration Reset: The container was reset to its initial state after each test case to 
prevent sequential dependencies between tests. 
This protocol addresses methodological limitations in previous studies that often relied 

on manual testing without systematic validation [31]. 

3.5. Vulnerability Assessment Framework 

To quantify the security impact of each vulnerability, we employed CVSS v3.1, which 
provides a standardized framework for assessing the severity of security vulnerabilities [49]. 
For each successful exploitation, we calculated a CVSS score based on the following metrics: 

• Attack Vector (AV): Network for remote access scenarios 

• Attack Complexity (AC): Low for straightforward exploitation 

• Privileges Required (PR): None for unauthenticated access, Low for authenticated 

• User Interaction (UI): None (no user interaction required) 

• Scope (S): Unchanged or Changed depending on impact 

• Confidentiality (C): High for information disclosure 

• Integrity (I): High for data manipulation 

• Availability (A): High for denial-of-service potential 
This scoring system enabled objective comparison of vulnerability severity across differ-

ent configurations and attack vectors. Table 6 shows the CVSS severity rating scale used in 
our analysis. 

Table 6. CVSS v3.1 Severity Levels. 

CVSS Score Severity Rating Description 

0.0 None No vulnerability present 

0.1-3.9 Low Limited impact, difficult to exploit 

4.0-6.9 Medium Significant impact but limited scope 

7.0-8.9 High Serious impact requiring attention 

9.0-10.0 Critical Severe impact requiring immediate remediation 
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We also examined the success rate of each configuration. Exploit success was calculated 

by dividing the number of successful exploit attempts by the total number of test cases per-
formed. This metric quantifies the effectiveness of each Redis configuration in mitigating or 
preventing security vulnerabilities. Mathematically, the success rate is defined as in Equation 
(1). 

Success Rate(%) = (
Number of Successful Exploits

Total Number of Tests
) × 100 (1) 

Where Number of Successful Exploits refers to the total count of vulnerabilities exploited 
successfully during testing; Total Number of Tests represents all payloads executed across 
each configuration, encompassing attack categories including command injection and Lua 
script injection. A total of 31 tests were conducted. 

A four-tiered risk rating system, informed by the principles of quantitative risk assess-
ment described by Hubbard et al. [50] was developed to categorize the security posture of 
Redis configurations based on their calculated exploit success rates as either high, medium, 
low, or no vulnerability risk based on the following; 

• Critical Risk: Assigned to configurations where the exploit success rate exceeds 50%, 
indicating significant vulnerabilities that demand immediate remediation. 

• High Risk: Assigned to configurations with success rates between 25% and 50%, high-
lighting major weaknesses that pose considerable security threats. 

• Medium Risk: Applied to configurations with success rates ranging from 10% to 25%, 
indicating moderate vulnerabilities with manageable risk levels. 

• Low Risk: For configurations exhibiting success rates below 10%, suggesting strong se-
curity postures with minimal exploitability. 

4. Results and Discussion 

This section presents our comprehensive analysis of Redis injection vulnerabilities across 
different security configurations. We evaluate quantitative exploitation metrics and qualitative 
security implications, providing an in-depth assessment of Redis's security posture under var-
ious protection mechanisms.  

4.1. Default Configuration Vulnerabilities 

The default Redis configuration demonstrated critical security weaknesses across multi-
ple attack vectors, as detailed in Table 7.  

Table 7. Redis Configuration Scenarios. 

Category Number of 
Tests 

Successful 
Exploits 

CVSS Scores Severity Distribution 

Info Disclosure 6 6 7.5 High: 6 

System Commands 3 0 - - 

Memory Exposure 4 4 5.3 Medium: 4 

Database Ops 4 4 3.7 Low: 4 

Auth Bypass 1 1 7.5 High: 1 

ACL Bypass 1 1 9.8 Critical: 1 

Lua RCE 3 0 - - 

Lua Info Disclosure 3 1 7.5 High: 1 

Lua Memory Exposure 3 3 5.3 Medium: 3 

Lua Db Ops 3 3 3.7 Low: 3 

Total 31 23 - 

Critical: 1 

High: 8 

Medium: 7 

Low: 7 
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4.1.1. Command Injection Analysis 

Command injection testing revealed comprehensive security failures in the default con-
figuration: 

• Information Disclosure: All information disclosure payloads (INFO, CLIENT LIST, 
CONFIG GET *, SCAN 0, CONFIG GET protected-mode, CONFIG GET require-
pass) executed successfully, providing attackers with detailed system information, includ-
ing configuration parameters, connected clients, and database contents. This reconnais-
sance capability represents the initial stage of sophisticated attacks. 

• Authentication Manipulation: The CONFIG SET requirepass '' command executed suc-
cessfully, demonstrating the ability to remove password protection entirely. This repre-
sents a critical security failure that undermines any subsequent authentication attempts. 

• ACL Manipulation: The ACL SETUSER default on nopass +@all command succeeded, 
allowing attackers to create or modify users with unrestricted permissions. This vulner-
ability enables privilege escalation and persistence even if other security controls are later 
implemented. 

• Data & Memory Manipulation: All database operations (FLUSHALL, FLUSHDB, 
KEYS *, DEL *) and memory operations (MEMORY DOCTOR, MEMORY MAL-
LOC-STATS, STRALGO LCS, MEMORY PURGE) executed successfully, demon-
strating the ability to manipulate memory and destroy data without restrictions. 
The only failed command injection attempts involved direct system command execution, 

which Redis does not support natively. 

4.1.2. Lua Script Injection Analysis 

Lua script injection testing revealed more nuanced vulnerabilities: 
Sandbox Limitations: Direct system command execution attempts via Lua's functions 

failed, indicating that Redis's Lua sandbox correctly restricts access to certain system func-
tions. 

• Command Chaining: Some Lua information disclosure payloads successfully demon-
strated that Lua scripts can execute certain Redis commands to obtain sensitive infor-
mation. 

• Memory & Database Operations: All Lua memory exposure and database operations 
tests successfully mirror the vulnerabilities observed in direct command injection. 
These findings highlight the critical security risks in Redis's default configuration, partic-

ularly the complete lack of authentication and authorization controls. The lack of even mini-
mal security features underscores the inherent risks of leaving Redis open to the public and 
reinforces the necessity of implementing at least basic authentication measures [18], [39]. 

4.2. Password-Protected Configuration Analysis 

The password-protected configuration demonstrated substantially improved security 
compared to the default configuration, with only 1 out of 31 payloads (3.23%) executing 
successfully, as shown in Table 8. The password protection successfully mitigated almost all 
injection attempts, consistently enforcing authentication requirements across most command 
types. However, a critical vulnerability was identified: the CONFIG SET requirepass '' com-
mand successfully bypassed authentication, effectively removing the password requirement. 
This exploit exposes a significant risk, as successful execution grants an attacker unrestricted 
access to the server. 

These finding addresses part of the second objective by identifying an authentication 
bypass vulnerability that persists even with password protection. The ability to remove pass-
word protection using a privileged command represents a critical residual risk in password-
protected configurations. 

4.3. ACL-Protected Configurations 

Our testing of ACL-protected configurations revealed dramatic security differences 
based on implementation details, highlighting the critical importance of proper ACL config-
uration. 
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Table 8. Vulnerability Breakdown for Password-Protected Configuration. 

Category Number of 
Tests 

Successful 
Exploits 

CVSS Scores Severity Distribution 

Info Disclosure 6 0 - - 

System Commands 3 0 - - 

Memory Exposure 4 0 - - 

Database Ops 4 0 - - 

Auth Bypass 1 1 7.5 High: 1 

ACL Bypass 1 0 - - 

Lua RCE 3 0 - - 

Lua Info Disclosure 3 0 - - 

Lua Memory Exposure 3 0 - - 

Lua Db Ops 3 0 - - 

Total 31 1 - 

Critical: 0 

High: 1 

Medium: 0 

Low: 0 

 

4.3.1. Permissive ACL Configuration 

The permissive ACL configuration demonstrated surprisingly poor security, with a 
48.39% exploitation success rate (15/31 payloads)—substantially worse than password pro-
tection alone, as detailed in Table 9. 

Table 9. Vulnerability Breakdown for Permissive ACL-Protected Configuration. 

Category Number of 
Tests 

Successful 
Exploits 

CVSS Scores Severity Distribution 

Info Disclosure 6 6 7.5 High: 6 

System Commands 3 0 - - 

Memory Exposure 4 4 5.3 Medium: 4 

Database Ops 4 4 3.7 Low: 4 

Auth Bypass 1 1 7.5 High: 1 

ACL Bypass 1 0 - - 

Lua RCE 3 0 - - 

Lua Info Disclosure 3 0 - - 

Lua Memory Exposure 3 0 - - 

Lua Db Ops 3 0 - - 

Total 31 15 - 

Critical: 0 

High: 7 

Medium: 4 

Low: 4 

 
This configuration showed mixed results: 

• Command Injection: Information disclosure, memory exposure, database operations, 
and authentication bypass payloads all succeeded, indicating inadequate command re-
strictions despite ACL implementation. 

•  Lua Script Protection: Notably, all Lua-based injections failed, demonstrating that even 
permissive ACLs can effectively restrict script-based attacks. 
The permissive ACL configuration failed to restrict critical administrative commands 

due to overly broad permissions. This finding directly addresses Objective 2 by demonstrating 
that misconfigured ACLs create substantial residual risks, particularly for command-based 
injections. 
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4.3.2. Restrictive ACL Configuration 

In stark contrast, the restrictive ACL configuration demonstrated highly effective vul-
nerability mitigation under the conditions of this study, with zero successful exploits across 
all 31 tested payloads, as shown in Table 10. 

Table 10. Vulnerability Breakdown for Restrictive ACL-Protected Configuration. 

Category Number of 
Tests 

Successful 
Exploits 

CVSS Scores Severity Distribution 

Info Disclosure 6 0 - - 

System Commands 3 0 - - 

Memory Exposure 4 0 - - 

Database Ops 4 0 - - 

Auth Bypass 1 0 - - 

ACL Bypass 1 0 - - 

Lua RCE 3 0 - - 

Lua Info Disclosure 3 0 - - 

Lua Memory Exposure 3 0 - - 

Lua Db Ops 3 0 - - 

Total 31 0 - 

Critical: 0 

High: 0 

Medium: 0 

Low: 0 

 
All command injection tests failed as shown in Table 9 due to either invalid username-

password pairs or the disabled status of the default user. This indicated that unauthorized 
users cannot interact with the Redis server, as ACL rules prevent both unauthenticated and 
misconfigured access. These failures are not attributable to network isolation but rather the 
effective enforcement of authentication and ACL policies. The ACL bypass attempt using 
ACL SETUSER default on nopass +@all resulted in an "ACL permission denied" error. This 
reflects the configuration's strict access control in disabling the default user, preventing any 
unauthorized access.  

The restrictive ACL configuration successfully implemented the principle of least privi-
lege by: 

• Disabling the default user and creating users with limited permissions 

• Restricting command access to only necessary operations 

• Preventing access to keys by default and explicitly allowing only required keys 

• Requiring authentication and denying access to dangerous command categories 
This configuration effectively mitigated all tested injection vectors, including both com-

mand and Lua script injections. This finding conclusively addresses Objective 1 by demon-
strating that properly configured ACLs provide comprehensive protection against injection 
vulnerabilities. 

4.4. Vulnerability Assessment Overview 

Our testing on Redis version 7.4.1 using 31 distinct injection payloads across four con-
figurations revealed significant variations in security effectiveness. To delineate these differ-
ences, Fig. 3 presents a comparative visualization of each configuration's vulnerability security 
risk levels by showing the percentage of the 31 attempted injection payloads that were suc-
cessful against each. This graphical representation illustrates the exploitation success rates, 
demonstrating a clear security progression from default settings to restrictive ACL implemen-
tation. As depicted in Fig. 3, the default configuration exhibited an alarming 74.19% exploi-
tation success rate (23/31 payloads), while password protection significantly reduced this to 
3.23% (1/31 payloads). Notably, the permissive ACL configuration showed a 48.39% success 
rate (15/31 payloads), substantially higher than password protection alone, a counterintuitive 
finding that challenges conventional security assumptions. The restrictive ACL configuration 
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achieved complete mitigation within the scope of our controlled experiment, yielding zero 
successful exploits against the 31 tested payloads. 

 

Figure 3. Exploitation Success Rates by Configurations 

These findings quantitatively address Objective 1 by demonstrating that while password 
protection provides substantial security improvement, ACLs' effectiveness varies dramatically 
based on implementation details, with restrictive ACLs providing complete vulnerability mit-
igation. 

4.5. Comparative Security Analysis 

Our findings enable a comprehensive comparison of Redis security configurations based 
on empirical vulnerability data. Figure 4 visualizes the security effectiveness across configu-
rations. 

 

Figure 4. Comparative Security Effectiveness by Configuration and Attack Vector 

These findings, as depicted in Table 11, reveal the following: 

• Security Progression: A clear security progression exists from default configuration 
(74.19% vulnerable) to restrictive ACL (0% vulnerable), with password protection 
(3.23% vulnerable) providing substantial but incomplete security. 
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• ACL Implementation Criticality: The dramatic difference between permissive ACL 
(48.39% vulnerable) and restrictive ACL (0% vulnerable) demonstrates that ACL effec-
tiveness depends entirely on proper implementation following the principle of least priv-
ilege. 

• Attack Vector Variations: Command injection showed higher success rates in permissive 
configurations, but both attack vectors were equally mitigated in the restrictive ACL 
configuration. 

• Vulnerability Category Distribution: Information disclosure vulnerabilities showed the 
highest success rates across configurations, followed by memory exposure, database op-
erations, and authentication bypass. 

Table 11. Comparative Security Analysis Based on 31 Security Tests.  

Metric 

Configuration 

Default Password Protected 
ACL Protected 

(Permissive) 
ACL Protected 

(Restrictive) 

Successful Exploits 23 1 15 0 

Success Rate 74.19% 3.23% 48.39% 0.00% 

Critical Severity 1 0 0 0 

High Severity 8 1 7 0 

Medium Severity 7 0 4 0 

Low Severity 7 0 4 0 

Security Rating Critical Risk Low Risk High Risk Low Risk 

 
These findings challenge the conventional security wisdom that implementing any ACL 

mechanism substantially improves security. Our data demonstrates that improperly config-
ured ACLs can create a false sense of security while leaving critical vulnerabilities exposed. 

4.6. Research Objectives Addressed 

Our empirical analysis directly addresses the overarching goals outlined in the Introduc-
tion, namely: first, validating the defensive impact of password authentication and ACL con-
figurations on Redis injection threats; and second, uncovering remaining vulnerabilities, par-
ticularly those involving Lua script execution under misconfigured access controls. The find-
ings confirm varying levels of protection depending on implementation and highlight critical 
risks that persist even under partially secured environments. 

4.6.1. Effectiveness of Password and ACL Mitigations 

Password protection demonstrated significant effectiveness (96.77% mitigation), but 
with a critical authentication bypass vulnerability. ACL effectiveness varied dramatically based 
on implementation. Permissive ACLs showed only 51.61% mitigation, worse than password 
protection alone. In contrast, restrictive ACLs achieved complete mitigation (100%) against 
the specific injection vectors tested in this research and achieved the lowest risk rating by 
effectively mitigating vulnerabilities through stringent ACL policies and network isolation, 
aligning with recommended security best practices [4], [16], [39]. These findings underscore 
the critical need for a multi-layered security approach encompassing robust ACL enforce-
ment, comprehensive password management, and network isolation to effectively protect Re-
dis deployments against contemporary cyber threats, proving the most effective security 
mechanism. 

4.6.2. Residual Risks Under Misconfigurations 

We identified two primary residual risks: 

• Authentication Bypass: In password-protected configurations, the ability to remove 
password protection through privileged commands 

• Command Accessibility: In permissive ACL configurations, excessive command privi-
leges that allow information disclosure, memory manipulation, and data operations 
Importantly, even under misconfigured ACLs, Lua script injections were more effec-

tively mitigated than direct command injections, suggesting that Redis's Lua sandbox provides 
some protection even with suboptimal configurations. 
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5. Conclusion and Future Work 

Our research makes several significant contributions to the field of NoSQL database 
security. Firstly, this study provides the first comprehensive academic evaluation of Redis 
injection vulnerabilities across command and Lua script attack vectors in modern Redis ver-
sions (7.4.1), addressing a critical gap in NoSQL security research. Our methodology com-
bines containerization, systematic payload testing, and formal vulnerability scoring to create 
a reproducible framework for evaluating NoSQL database security. Secondly, we developed 
a comprehensive taxonomy of Redis injection vulnerabilities that categorizes attack vectors 
according to their underlying architectural causes. This Redis-specific threat model integrates 
Redis's unique architectural characteristics, including its in-memory design and Lua scripting 
mechanisms, providing a structured framework for understanding Redis security that was 
previously lacking in the literature. Thirdly, our controlled experiments quantified the security 
effectiveness of different Redis configurations, revealing that while restrictive ACLs achieve 
complete mitigation (0% success rate) within our experimental framework against the tested 
payloads, improper ACL implementation can create a false sense of security. This empirical 
validation addresses a significant gap in previous Redis security research and demonstrates 
that security controls must be implemented appropriately to be effective. Lastly, we discov-
ered that permissive ACL configurations provide substantially weaker protection (48.39% 
success rate) than password-only configurations (3.23% success rate). This counterintuitive 
finding challenges conventional security assumptions and highlights the critical importance 
of proper ACL implementation. 

While our study provides valuable understanding of Redis security, several limitations 
should be acknowledged. First, our experiments were conducted in a controlled Dockerized 
environment that may not fully represent all production deployment scenarios, particularly 
those involving complex network architectures or custom Redis modules. Second, our find-
ings are specific to Redis 7.4.1 and may not apply to earlier versions with different security 
features or future versions that may address identified vulnerabilities. Thirdly, while our test 
suite was comprehensive, it cannot exhaustively cover all possible injection payloads or attack 
techniques. Novel attack vectors may emerge that were not captured in our taxonomy. 

These limitations consequently highlight several promising avenues for future research. 
These include the development of automated tools for discovering novel Redis injection vul-
nerabilities, potentially leveraging techniques such as fuzzing or symbolic execution. Further 
research could also focus on a quantitative analysis of the performance impact associated with 
different security configurations, aiding organizations in making informed decisions regarding 
security-performance trade-offs. Extending the methodology to other NoSQL databases 
would enable a comparative analysis of security architectures across different database para-
digms. Research into dynamic ACL systems capable of adapting to evolving threat landscapes 
represents another crucial area for developing more robust protection against emerging attack 
vectors. Finally, applying formal methods to verify the security properties of Redis's core 
components, particularly the Lua scripting engine and ACL implementation, presents a rig-
orous approach to enhancing security assurances. 

Redis has become a critical component of modern data infrastructure, powering appli-
cations across industries from e-commerce to healthcare. Its performance advantages have 
driven widespread adoption, but our research demonstrates that security considerations must 
be prioritized alongside performance to prevent potentially devastating exploitation. The sig-
nificant variations in vulnerability across different Redis configurations highlight the critical 
importance of security-conscious deployment practices. In implementing the recommenda-
tions derived from our empirical findings, organizations can substantially reduce their risk 
exposure while maintaining Redis's performance advantages. Our research contributes to the 
theoretical understanding of NoSQL security architectures and practical knowledge for se-
curing Redis deployments. Hence, we advance the state of database security and protect the 
critical data infrastructure that powers modern digital services. 
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