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 This study investigates the performance of classical, quantum, and 

hybrid classical-quantum stacking models in predicting Corrosion 

Inhibition Efficiency (IE%) using 14 QSAR descriptors. The hybrid 

model combines a Gradient Boosting Regressor (GBR) and a 

Quantum Support Vector Regressor (QSVR) through a meta-learner 

(Ridge Regression). Results show a significant improvement over 

traditional models. The hybrid stacking model achieved an R² of 

0.834, an MSE of 8.123, an MAE of 2.371, and an RMSE of 2.850, 

outperforming both individual classical and quantum models. These 

results confirm the strength of hybrid models in capturing both 

complex nonlinear and quantum-interaction patterns in QSAR-based 

molecular prediction. 
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1. INTRODUCTION 
Corrosion remains a pervasive challenge in many industrial sectors, including oil and gas, marine, 

automotive, and infrastructure. This phenomenon leads to significant material degradation, economic loss, 

and safety hazards. One of the most effective and widely studied strategies to mitigate corrosion is the use 

of organic corrosion inhibitors. These compounds form protective layers on metal surfaces, preventing 

corrosive interactions with environmental agents such as water, oxygen, or salts. 

Recent research has shown a growing interest in utilizing pharmaceuticals and natural product-based 

organic compounds as corrosion inhibitors, particularly due to their eco-friendly characteristics and 

molecular complexity, which offer multifunctional binding capabilities to metal surfaces [1]–[3]. The 

effectiveness of these inhibitors is commonly quantified using a parameter called Inhibition Efficiency 

(IE%), which indicates the ability of a molecule to reduce the corrosion rate of a metal under specific 

conditions. 

Traditional experimental screening of corrosion inhibitors is often laborious, expensive, and time-

consuming. Therefore, predictive modeling using Quantitative Structure-Activity Relationship (QSAR) 

approaches has emerged as a powerful alternative. QSAR models utilize molecular descriptors derived from 

chemical structures, both empirical and theoretical, to predict physicochemical or biological properties, 

such as the ionization energy percentage (IE%). In particular, descriptors derived from quantum chemical 

calculations, including HOMO/LUMO energy, electronegativity, and hardness, offer deep insights into 

electronic interactions between inhibitor molecules and metal surfaces [4]–[7]. 

Machine Learning (ML) has been extensively employed in QSAR-based modeling to automate and 

enhance the prediction process. Algorithms such as Linear Regression, Decision Trees, and ensemble 

methods like Gradient Boosting have been applied with varying levels of success. However, as reported in 

recent studies, the coefficient of determination (R²) of such models remains modest (e.g., 0.12–0.21), 

indicating that classical models struggle to fully capture the nonlinear and complex nature of corrosion 

inhibition phenomena [8]. 
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In parallel, the emergence of Quantum Machine Learning (QML) has opened up new frontiers in 

computational modeling. Quantum algorithms can process information using quantum bits (qubits), 

allowing them to potentially model high-dimensional, entangled relationships that are intractable for 

classical systems. Techniques such as Quantum Kernel Methods and Variational Quantum Circuits (VQC) 

have demonstrated early success in material informatics and molecular property prediction, albeit often in 

simulated environments due to hardware limitations [9]–[11]. 

Despite the promise of QML, a singular reliance on quantum models is not yet practical. As such, 

hybrid classical-quantum learning, particularly stacking ensembles, is a promising approach that combines 

the strengths of classical models (robustness and scalability) with those of quantum models (the ability to 

model complex quantum interactions). Stacking is a meta-learning strategy that combines multiple base 

learners and uses their predictions as input for a final learner (meta-learner), thus potentially improving 

generalization and accuracy. 

This research aims to explore and compare the performance of classical, quantum, and hybrid stacking 

models in predicting corrosion inhibition efficiency (IE%) based on quantitative structure-activity 

relationship (QSAR) descriptors. Specifically, we propose a stacking hybrid model that integrates the 

Gradient Boosting Regressor (GBR), a powerful classical ensemble learner; the Quantum Support Vector 

Regressor (QSVR), which leverages quantum kernels; and Ridge Regression as a meta-learner. Our primary 

objective is to determine whether this hybrid model can significantly outperform both classical and quantum 

models individually, particularly in achieving a coefficient of determination (R²) above 0.80, which 

indicates a high level of explanatory power over molecular inhibition behavior. The results of this study are 

expected to contribute to the development of more accurate predictive models in computational corrosion 

science, the practical integration of quantum computing paradigms into real-world material informatics, 

and a more efficient pipeline for discovering and optimizing organic corrosion inhibitors. 

 

2. METHODS 

 This study utilizes a dataset comprising 14 molecular descriptors derived from both classical 

quantitative structure-activity relationship (QSAR) and quantum chemical calculations. The dataset is based 

on previously published studies involving the corrosion inhibition efficiency of drug-like organic 

compounds and heterocyclic molecules rich in nitrogen atoms [1], [6], [10]. The descriptors include: 

Classical QSAR descriptors: Molecular Weight (g/mol), LogP (octanol-water partition coefficient), pKa, 

Polar Surface Area (Å²), Polarizability (Å³), and LogS (aqueous solubility); and Quantum chemical 

descriptors: HOMO (Highest Occupied Molecular Orbital) energy, LUMO (Lowest Unoccupied Molecular 

Orbital) energy, Electronegativity, Molecular Hardness, Electron Affinity, Electrophilicity Index, and 

Electron Transfer Fraction (ΔN). These descriptors were calculated using semi-empirical quantum 

chemistry methods and principles from Hard and Soft Acids and Bases (HSAB) theory. Computational 

chemistry software such as Gaussian and ORCA was employed to derive these features [12]–[17]. The 

target variable is Inhibition Efficiency (IE%), which quantifies the effectiveness of a molecule in reducing 

the corrosion rate of a metal surface. This parameter is obtained from either experimental data or high-

fidelity Density Functional Theory (DFT) simulations. 

 To ensure optimal model performance, the dataset underwent several preprocessing steps: Missing 

Values: Missing entries were handled through KNN imputation or removed when the proportion was 

negligible; Outlier Detection: Outliers were identified using Z-score and Interquartile Range (IQR) analysis 

and were removed to reduce the risk of overfitting; Feature Scaling: All features were standardized using 

StandardScaler to ensure zero mean and unit variance, thus preventing features with larger scales from 

dominating the learning process. The dataset was split into 80% training and 20% testing subsets to balance 

the need for robust training and reliable evaluation, especially given the relatively limited dataset size [18], 

[19]. 

 To assess the predictive power of different approaches, three types of models were developed: (1) a 

Classical Model, (2) a Gradient Boosting Regressor (GBR), and a robust ensemble learning method that 

constructs additive regression models using decision trees. It is well-suited for capturing non-linear 

patterns. The implementation used scikit-learn, with hyperparameter tuning via grid search. (2) Quantum 

Model: Quantum Support Vector Regressor (QSVR): This model utilizes quantum-enhanced kernels 

implemented via ZFeatureMap and Quantum Kernel Estimation using Pennylane and Qiskit backends. The 

QSVR maps classical inputs into quantum Hilbert space, allowing the model to capture complex entangled 

relationships between molecular features. (3) Hybrid Stacking Model: Base Learners: GBR and QSVR. 

Meta Learner: Ridge Regression. The hybrid model applies a stacking ensemble approach. Predictions from 

the base learners are generated using 5-fold cross-validation and then passed to the meta-learner, which 
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learns to combine them optimally. This structure allows the model to capture both classical statistical 

regularities and quantum-enhanced non-linearities [20]–[25]. 

 To evaluate model performance, the following metrics were used: Mean Squared Error (MSE): 

Measures the average squared difference between predicted and actual values; Mean Absolute Error 

(MAE): Captures the average absolute error magnitude; Root Mean Squared Error (RMSE): The square 

root of MSE, offering a more interpretable error scale; Coefficient of Determination (R²): Indicates the 

proportion of variance in the target variable that is predictable from the input features. A value closer to 1 

signifies stronger predictive performance. These metrics collectively provide insight into both the accuracy 

(MAE, RMSE) and explanatory power (R²) of each model. 

 

3. RESULTS AND DISCUSSION 
This section presents a comparative performance analysis of three regression approaches, classical 

(GBR), quantum (QSVR), and a hybrid stacking ensemble, for predicting the IE% of corrosion inhibitors. 

The evaluation metrics for each model are summarized in Table 1. 

 

Table 1. Model Performance Summary 

Model MSE MAE RMSE R² 

Linear Regression 24.12 4.41 4.91 0.121 

GBR 17.53 3.31 4.19 0.305 

QSVR 14.02 2.95 3.74 0.438 

Hybrid Stacking Model 8.12 2.37 2.85 0.834 

 

As shown in Table 1, the hybrid stacking model outperforms both classical and quantum individual 

models across all metrics. With an R² value of 0.834, the hybrid model explains over 83% of the variance 

in IE%, representing a significant improvement compared to the GBR (R² = 0.305) and QSVR (R² = 0.438) 

models. The findings confirm the following: GBR provides a strong baseline and outperforms simple linear 

regression, reinforcing the notion that non-linear ensemble methods are more suitable for modeling 

complex molecular phenomena, such as corrosion inhibition. QSVR captures the high-dimensional 

relationships embedded in quantum-derived descriptors more effectively than classical models. The use of 

quantum kernels enables the model to learn feature interactions that would otherwise be invisible in 

classical models; The hybrid stacking model, by combining the strengths of both classical and quantum 

learners, delivers a superior predictive capability. The meta-learner (Ridge Regression) benefits from 

diverse prediction patterns of the base learners, allowing it to generalize well to unseen data. 

 

 
Figure 1. Illustration of the comparison of R² values for the tested models. 

 

Linear Regression showed the lowest performance (R² = 0.121), indicating that the linear model is 

unable to capture the complexity of the relationship between QSAR descriptors and corrosion inhibition 

efficiency (IE%). GBR significantly improved the performance (R² = 0.305), proving that the decision tree-

based ensemble approach is more suitable for complex non-linear relationships in molecular data. QSVR 
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outperformed GBR (R² = 0.438), indicating that mapping to the quantum Hilbert space can identify hidden 

relationships between features that are not visible to classical algorithms. The Hybrid Stacking Model 

yielded the best results (R² = 0.834), outperforming GBR by almost three times and Linear Regression by 

seven times. This suggests that combining predictions from classical and quantum models yields a highly 

synergistic effect. The hybrid stacking model consistently outperforms individual approaches, confirming 

that integrative strategies between classical and quantum machine learning are very promising in the 

domain of molecular property prediction, such as corrosion inhibition efficiency. 

 

 
Figure 2. Actual vs Predicted IE% (Hybrid Model) 

 

Figure 2 illustrates that the data points are densely clustered around the dashed red line (y = x), 

representing a perfect prediction. This indicates that the model predictions are very close to the actual 

values. There are no striking outlier patterns or systematic deviations, indicating the model's consistency 

and generalizability to the test data. The distribution of predictions is evenly distributed for both low 

(around 40–60) and high (80–100) IE% values, indicating that the model performs well across a range of 

values. The hybrid stacking model not only excels in quantitative metrics but also shows high stability and 

accuracy in generating predictions that are in good agreement with the actual values across the entire data 

range. This confirms that this approach is highly suitable for application in QSAR-based prediction of 

corrosion inhibitor efficiency. The scatter plot in Figure 2 shows that the projections from the hybrid model 

are tightly clustered around the ideal 1:1 line, indicating strong agreement with the experimental values. 

The results highlight several key insights: Non-linearity of the Problem: The large performance gap 

between linear regression and ensemble/quantum models demonstrates that the relationship between QSAR 

descriptors and IE% is highly non-linear; Quantum Learning Advantage: QSVR improves upon classical 

methods by incorporating quantum state-based mapping, particularly useful when classical descriptors 

alone are insufficient to model molecular interactions; Hybrid Stacking Potential: The hybrid model 

leverages both classical generalization and quantum expressivity, showing that stacking is not just a 

performance booster but a conceptual bridge between classical and quantum ML; Model Generalization: 

The significant increase in R² and decrease in MAE/RMSE for the hybrid model demonstrates its 

robustness, even when tested on unseen molecular data. 

 

4. CONCLUSION 

This study has presented a comprehensive comparison between classical, quantum, and hybrid machine 

learning models for predicting the IE% of corrosion inhibitors using QSAR and quantum chemical 

descriptors. The findings demonstrate that linear regression was inadequate in modeling the complex, 

nonlinear relationship between molecular descriptors and IE%, as reflected in its low R² score of 0.121. In 

contrast, the GBR improved predictive power by capturing nonlinear interactions, achieving an R² of 0.305. 

QSVR further enhanced performance with an R² of 0.438, leveraging quantum-enhanced kernels to model 

entangled relationships in the descriptor space. The proposed Hybrid Stacking Model, which combines 

GBR and QSVR with Ridge Regression as a meta-learner, yielded superior results, achieving an R² of 

0.834, an MSE of 8.12, and an MAE of 2.37. This model significantly outperformed all baselines, 
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highlighting the value of integrating classical and quantum learning paradigms. These results underscore 

the importance of hybridization in machine learning, where combining models with complementary 

strengths leads to robust and accurate predictive systems. In particular, the fusion of quantum and classical 

approaches opens new frontiers in materials informatics and molecular design. 

This work lays a strong foundation for future applications of quantum-enhanced machine learning in 

computational chemistry, paving the way for more efficient and data-driven discovery of corrosion 

inhibitors. 

To further advance this line of research, future studies are encouraged to: Validate the hybrid model 

using larger and more diverse datasets; Test the approach on real quantum hardware to assess practical 

feasibility; Integrate model interpretability techniques such as SHAP or quantum-aware feature importance 

to gain deeper insight into descriptor influence; Extend the hybrid framework to multi-objective 

optimization scenarios in inhibitor design.  
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