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 The rapid advancement of quantum computing poses a substantial 

threat to classical cryptographic systems, accelerating the global shift 

toward post-quantum cryptography (PQC). Despite their theoretical 

robustness, practical deployment of PQC algorithms remains 

hindered by challenges such as computational overhead, side-channel 

vulnerabilities, and poor adaptability to dynamic environments. This 

study integrates machine learning (ML) techniques to enhance three 

representative PQC algorithms: FrodoKEM, Falcon, and 

Supersingular Isogeny Key Encapsulation (SIKE). ML is employed 

for four key purposes: performance optimization through Bayesian 

and evolutionary parameter tuning; real-time side-channel leakage 

detection using deep learning models; dynamic algorithm switching 

based on runtime conditions using reinforcement learning; and 

cryptographic forensics through anomaly detection on vulnerable 

implementations. Experimental results demonstrate a reduction of up 

to 23.6% in key generation time, over 96% accuracy in side-channel 

detection, and significant gains in adaptability and leakage resilience. 

ML models also identified predictive patterns of cryptographic 

fragility in the now-broken SIKE protocol. These findings confirm 

that machine learning enhances both performance and security, 

enabling intelligent and adaptive cryptographic infrastructures for the 

post-quantum era. 
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1. INTRODUCTION 
The rapid development of quantum computing is fundamentally transforming the information security 

landscape. Classical cryptographic systems such as RSA, Elliptic Curve Cryptography (ECC), and the 

Diffie-Hellman key exchange protocol rely on computational hardness assumptions, like integer 

factorization and discrete logarithms, that are infeasible for traditional computers to solve [1], [2]. However, 

the introduction of quantum algorithms, notably Shor's algorithm, poses a severe threat to these 

cryptosystems by enabling efficient factorization and discrete logarithm computation on quantum hardware. 

This emergent threat necessitates the transition toward post-quantum cryptography (PQC), a class of 

cryptographic algorithms designed to be secure against classical and quantum adversaries [3]. 

Among the diverse PQC proposals being evaluated under initiatives such as the NIST PQC 

Standardization Project, three algorithms stand out due to their mathematical diversity and real-world 

potential: Supersingular Isogeny Key Encapsulation (SIKE), which is based on the hardness of finding 

isogenies between elliptic curves; FrodoKEM, a conservative and unstructured lattice-based key 

encapsulation mechanism; and Falcon, a fast and compact lattice-based digital signature algorithm using 

NTRU lattices. Despite their strong theoretical underpinnings, these algorithms face practical challenges. 

FrodoKEM suffers from significant computational overhead and large key sizes. Falcon is sensitive to side-
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channel attacks due to its reliance on floating-point arithmetic, and SIKE, while offering compact keys, has 

recently been broken via classical attacks. These constraints limit their deployment, especially in resource-

constrained or latency-sensitive environments such as IoT devices, mobile platforms, and embedded 

systems [4], [5]. 

In parallel, the application of machine learning (ML) techniques in cybersecurity and cryptography has 

shown considerable promise. ML models have been successfully applied in classical cryptographic domains 

to automate cryptanalysis, detect side-channel leaks, and optimize algorithmic parameters. Deep learning 

architectures, such as convolutional neural networks (CNN) and autoencoders, have proven effective in 

detecting anomalies in power traces and electromagnetic emissions, thereby enabling robust side-channel 

resistance. Additionally, reinforcement learning and Bayesian optimization have been employed to 

optimize cryptographic parameters for achieving optimal trade-offs between security and efficiency. Within 

the domain of PQC, ML has started to gain traction, particularly for structured lattice schemes such as 

CRYSTALS-Kyber and Dilithium. However, integration of ML into non-structured lattice schemes (e.g., 

FrodoKEM), isogeny-based schemes (e.g., SIKE), and signature-specific algorithms (e.g., Falcon) remains 

relatively underexplored [6], [7]. 

This observation reveals several critical research gaps. First, most existing ML-PQC studies are 

focused on a narrow subset of algorithms, leaving large areas, such as unstructured lattices and isogeny-

based schemes, largely unstudied in terms of ML-enhanced performance or security. Second, the potential 

of adaptive cryptographic systems, which dynamically switch between PQC schemes based on real-time 

system and threat conditions, remains mostly untapped. Third, implementation-level resilience, especially 

against side-channel attacks, is often overlooked in favor of algorithmic security. Finally, little attention 

has been given to postmortem cryptographic analysis. ML could play a critical role in uncovering 

vulnerabilities in PQC algorithms that were previously believed to be secure, as evidenced by the recent 

break of SIKE [8], [9]. 

To address these gaps, this study proposes a novel and integrative framework for enhancing PQC 

algorithms through machine learning, specifically focusing on SIKE, FrodoKEM, and Falcon. Our 

contributions are fourfold. First, we demonstrate the use of ML-assisted optimization techniques, such as 

Bayesian optimization and reinforcement learning, to enhance key generation efficiency and parameter 

selection in FrodoKEM and Falcon. Second, we design side-channel attack detection mechanisms using 

deep learning models that monitor and classify physical leakage patterns in Falcon, while exploring 

obfuscation strategies for SIKE-like systems. Third, we develop an adaptive PQC control layer that uses 

ML classifiers to enable real-time switching between FrodoKEM and Falcon based on security context and 

hardware constraints. Fourth, we introduce a novel approach to cryptographic forensics, utilizing ML-based 

analysis to identify early warning signs of structural weaknesses, providing insights for future isogeny-

based cryptographic research. 

This work contributes to the development of resilient, efficient, and intelligent cryptographic 

infrastructures for the quantum era. By leveraging the strengths of ML, we aim to optimize and fortify PQC 

algorithms in preparation for their integration into real-world systems. 

 

2. LITERATURE REVIEW 

2.1  Post-Quantum Cryptographic Algorithms 

 PQC refers to cryptographic algorithms designed to remain secure even in the presence of quantum 

adversaries. These algorithms are based on mathematical problems considered hard for classical and 

quantum computers. Several categories of PQC have been proposed, including lattice-based, code-based, 

multivariate, hash-based, and isogeny-based cryptography. While lattice-based algorithms like 

CRYSTALS-Kyber and Dilithium have gained attention due to their performance and progress in 

standardization, other schemes, such as FrodoKEM, Falcon, and SIKE, offer alternative strengths and trade-

offs [10]. 

 FrodoKEM is a key encapsulation mechanism based on the Learning with Errors (LWE) problem, 

utilizing non-structured matrices, which makes it more conservative and secure but computationally 

intensive. Falcon is a digital signature scheme that utilizes NTRU lattices and fast Fourier sampling, 

enabling short signatures with high verification speed, albeit with some implementation sensitivity. SIKE 

relies on the hardness of computing isogenies between supersingular elliptic curves, offering compact key 

sizes but recently facing cryptanalytic breaks. These algorithms represent vital diversity in PQC design, but 

they also highlight implementation challenges, especially in constrained environments [11]. 
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2.2  Machine Learning in Cryptography 

 ML has been widely applied in various cryptographic contexts. In traditional cryptography, ML 

techniques have been utilized to automate cryptanalysis, detect anomalies in encrypted traffic, and identify 

vulnerabilities in cryptographic hardware. For instance, reference [12] applied CNNs to predict round keys 

in block ciphers, such as Speck, outperforming traditional differential attacks. Similarly, reference [13] 

demonstrated the effectiveness of deep learning and SVMs in detecting side-channel leaks in AES and RSA 

implementations. 

 In PQC, ML has shown promise in optimizing lattice-based schemes. Reference [14] employed 

reinforcement learning to tune parameters in NewHope, while reference [15] applied neural networks to 

accelerate polynomial arithmetic. However, most research focuses on structured lattice schemes, leaving 

non-structured lattices, isogeny-based, and compact signature algorithms relatively under-investigated from 

an ML perspective. 

 

2.3  ML for Side-Channel Attack Detection in PQC 

 Side-channel attacks (SCAs) are one of the most pressing concerns in cryptographic implementations. 

PQC schemes, especially those deployed in embedded or IoT environments, are susceptible to power, 

electromagnetic, and timing leakages. ML-based anomaly detection offers a powerful mechanism for 

identifying such threats. Reference [16] illustrates the use of autoencoders for power trace analysis, while 

Reference [17] applies deep learning to detect leakages in post-quantum signature schemes. 

 Despite these advancements, few studies have addressed the use of ML in detecting side-channel 

vulnerabilities in algorithms like Falcon, where floating-point arithmetic is a known risk, or in SIKE, where 

isogeny computations expose timing and memory access patterns. This gap leaves room for practical ML-

based defense mechanisms tailored to the unique characteristics of these PQC systems. 

 

2.4  Adaptive and ML-Driven Cryptographic Systems 

 Adaptive security systems, which dynamically adjust to the runtime environment or attack surface, are 

a growing area of research. This concept has been explored in the context of context-aware cryptography, 

where ML models recommend encryption protocols based on system constraints. For instance, [18] 

proposed an adaptive hybrid encryption system for secure mobile communication using neural network-

based decision-making. 

 In the context of PQC, however, there is limited research on dynamic or self-learning systems that can, 

for example, switch between FrodoKEM and Falcon based on device capabilities or threat level. The 

application of classification models and reinforcement learning agents to drive such adaptive behavior 

remains largely unexplored, particularly for real-time use in constrained or mission-critical environments 

[19]. 

 From the reviewed literature, several gaps become evident: Underrepresentation of ML research on 

FrodoKEM, Falcon, and SIKE, compared to CRYSTALS-Kyber and Dilithium; Limited work on ML-

based optimization and resource management tailored to non-structured or compact PQC schemes;  Few 

studies on ML-driven side-channel protection for Falcon and SIKE, despite their known vulnerabilities; 

Minimal exploration of adaptive PQC architectures that dynamically select or configure cryptographic 

algorithms using intelligent decision-making systems [20]. 

 This study aims to fill these gaps by proposing a unified ML-enhanced framework that enhances the 

implementation and operational efficiency of selected PQC algorithms, introducing adaptive capabilities 

and forensic evaluation tools for quantum-era security systems. 

 

3. METHODS 

 This research adopts a design-oriented approach to exploring how machine learning (ML) can enhance 

the performance, security, and adaptability of PQC algorithms. The methodology is structured into four 

primary modules: algorithm selection, ML model development, evaluation framework, and implementation 

strategy.  

3.1 Algorithm Selection and Use-Case Mapping 

 We select three PQC algorithms representing distinct cryptographic domains and implementation 

profiles: FrodoKEM (a non-structured lattice-based key encapsulation mechanism known for conservative 

security assumptions but high computational overhead); Falcon (a compact, lattice-based digital signature 

scheme offering efficient verification but sensitive to side-channel leakage and floating-point 

vulnerabilities); and SIKE (an isogeny-based key exchange protocol previously considered quantum-secure 

but now broken classically; retained in this study for forensic ML modeling and side-channel behavior 
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analysis). Each algorithm is mapped to its potential deployment context (e.g., FrodoKEM for server-grade 

security, Falcon for constrained devices, SIKE for forensic ML modeling). 

 

3.2 Machine Learning Integration Modules 

 We use Bayesian Optimization and Genetic Algorithms (GA) to tune parameters such as matrix size 

(FrodoKEM), sampling noise (Falcon), and timing intervals (SIKE). The objective is to reduce key 

generation and encapsulation latency, maintain or improve IND-CCA and EUF-CMA security levels, and 

adapt parameter selection to different runtime profiles. 

 We develop ML models to detect abnormal behavior in power and timing profiles. CNNs are trained 

on power traces and EM data to detect leakage in Falcon. Autoencoders and LSTM networks monitor timing 

anomalies in SIKE's field arithmetic routines. In addition, GANs are introduced to simulate and inject noise 

into vulnerable computation blocks as a proactive defense. 

 A classification-based decision engine is designed to monitor resource constraints (CPU, memory, 

battery level) and system context (e.g., mobile, cloud, edge) to recommend switching between FrodoKEM 

and Falcon. We used Decision Trees and Random Forests for explainability. Reinforcement Learning (RL) 

agents that continuously learn optimal switching policies based on operational feedback. 

 Although SIKE has been officially broken, we treat it as a forensic case to examine how ML could 

have helped forecast vulnerabilities. We feed timing and side-channel datasets into CNN and LSTM models 

to predict potential key recovery success based on leakage patterns, and train anomaly detectors to flag 

early warning signs of cryptographic fragility. 

 Datasets for ML training and evaluation include: Synthetic side-channel traces generated via 

simulation tools (e.g., ChipWhisperer), real trace captures from Falcon and FrodoKEM implementations 

on ARM Cortex-M platforms, and timing profiles and arithmetic logs from SIKE implementations in C and 

assembly. All data are preprocessed using standard normalization and feature extraction techniques. Data 

augmentation techniques such as trace shifting and noise injection enhance model generalization. 

 Each ML-PQC module is evaluated based on distinct performance indicators in Table 1. Additionally, 

all models are evaluated for their robustness to adversarial attacks, and the ML inference time is assessed 

to ensure minimal overhead in cryptographic operations. 

 

Table 1. Metrics evaluation 

Module Metrics 

Parameter Optimization Key generation time, encapsulation time, success rate (↑) 

Side-Channel Detection Detection accuracy, F1-score, false positives (↓) 

Adaptive Switching Latency gain, switching accuracy, model stability 

Forensic Modeling (SIKE) Predictive precision, anomaly recall, interpretability 

 

4. RESULTS AND DISCUSSION 
4.1  Parameter Optimization for FrodoKEM and Falcon 

ML–driven parameter optimization was applied to FrodoKEM and Falcon to reduce cryptographic 

operation latency, particularly in key generation. As illustrated in Table 1, the optimization process 

produced tangible performance gains without compromising the correctness or cryptographic strength of 

the schemes. In the case of FrodoKEM, the average key generation time was reduced from 4.12 ms to 3.15 

ms, reflecting a 23.6% improvement. This improvement was primarily achieved by optimizing matrix 

sampling and error distribution parameters through Bayesian optimization. The encapsulation time dropped 

by approximately 1.09 ms (18.5%), demonstrating that ML-assisted tuning affects both key generation and 

downstream encryption operations. These gains are particularly significant in resource-constrained 

environments, such as embedded IoT devices, where millisecond-level latency reductions can have a 

substantial impact on system responsiveness and battery usage. Similarly, Falcon-512 benefited from ML-

guided configuration of FFT-related precision thresholds and rejection sampling parameters. The key 

generation time decreased from 1.82 ms to 1.55 ms, yielding a 14.8% reduction. While the absolute 

improvement is smaller than in FrodoKEM, Falcon's already efficient design means that even modest 

enhancements are valuable, especially in high-throughput or mobile applications. 
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Table 1. Performance Gains After ML-Based Parameter Optimization 

Algorithm 
Baseline 

KeyGen Time 

Optimized 

KeyGen Time 
Improvement 

Baseline 

Encapsulation 

Time 

Optimized 

Time 

Success 

Rate 

FrodoKEM 4.12 ms 3.15 ms 23.6% 5.88 ms 4.79 ms 100% 

Falcon-512 1.82 ms 1.55 ms 14.8% – – – 

 

 
Figure 1. Key generation time before and after ML optimization 

 

Figure 1 visually illustrates the performance improvements achieved through ML integration. The bar 

chart shows a clear and consistent decrease in key generation times across both algorithms. Notably, the 

gap between baseline and optimized performance is more pronounced for FrodoKEM, consistent with its 

more complex and less structured computational profile. This observation suggests that non-structured PQC 

schemes, which typically have higher entropy in their parameter space, may benefit more substantially from 

ML–based optimization techniques than highly structured algorithms, such as Falcon. From a systems 

integration perspective, these results demonstrate that ML can serve as an automated co-design layer for 

PQC algorithms, intelligently navigating performance–security trade-offs based on real-world device 

constraints. Furthermore, these improvements were achieved without manual tuning, highlighting the 

practical feasibility of deploying ML optimization pipelines as part of future cryptographic toolchains. In 

conclusion, the results from Table 1 and Figure 1 strongly support the hypothesis that machine learning can 

significantly enhance the operational efficiency of post-quantum cryptographic algorithms, particularly in 

the context of key generation and encapsulation processes. These gains improve user experience in latency-

sensitive applications and make PQC schemes more deployable across heterogeneous computing 

environments. 

 

4.2  Side-Channel Attack Detection and Obfuscation 

 PQC algorithms, though resistant to quantum and classical mathematical attacks, remain vulnerable to 

SCA, which exploit physical characteristics such as power consumption, electromagnetic emissions, and 

execution timing. These attacks are particularly threatening in real-world implementations where 

cryptographic operations cannot be perfectly isolated from other processes. Machine learning models were 

deployed for leakage detection and trace obfuscation to mitigate this risk, with promising results. As shown 

in Table 2, a CNN trained on power traces from the Falcon signing process achieved a detection accuracy 

of 96.2%, with an F1-score of 0.95. This indicates strong performance in identifying vulnerable and secure 

operational patterns, with minimal false classifications. The LSTM model trained on timing anomalies from 

SIKE similarly achieved a respectable 91.4% accuracy, highlighting its effectiveness in modeling temporal 

dependencies within cryptographic routines.  



Akrom et al.  Journal of Multiscale Materials Informatics 2(1), 2025, 7-17 

12 

 

 

Table 2. SCA Detection Accuracy 

Algorithm Model Data Type Detection Accuracy F1-Score 

Falcon CNN Power Trace 96.2% 0.95 

SIKE LSTM Timing Data 91.4% 0.89 

 

 
Figure 2. CNN Classification Output on Falcon Power Traces 

 

Table 3. GAN-Based Trace Obfuscation Impact 

Algorithm SNR Before GAN SNR After GAN Leakage Reduction 

Falcon 8.5 dB 5.2 dB 39% 

SIKE 7.9 dB 4.6 dB 41% 

 
 Figure 2 illustrates the efficacy of the CNN model, as well as a confusion matrix of its classification 

output. The matrix shows the model's high precision and recall, with only minor misclassifications between 

secure and vulnerable traces. This validates the hypothesis that ML models, particularly deep learning 

architectures, can reliably detect subtle side-channel patterns that would otherwise go unnoticed by 

traditional rule-based detection systems. 

 Beyond detection, Table 3 evaluates the impact of GAN-based trace obfuscation. In this setup, GANs 

were trained to generate artificial noise sequences that mimic natural power/timing fluctuations, and these 

were injected into trace outputs during sensitive cryptographic operations. The result was a significant 

reduction in the Signal-to-Noise Ratio (SNR): for Falcon, the SNR dropped from 8.5 dB to 5.2 dB, reducing 

distinguishability by ~39%; for SIKE, the SNR fell from 7.9 dB to 4.6 dB, representing a 41% improvement 

in leakage concealment. These reductions are non-trivial: Lower SNR means side-channel attackers will 

require more traces to perform successful Differential Power Analysis (DPA) or Template Attacks, 

increasing the practical difficulty and cost of such attacks. This approach effectively introduces a dynamic 

and data-driven layer of defense that evolves with the system, something static countermeasures like 

masking or constant-time code cannot achieve alone. Significantly, this obfuscation mechanism operates 

without altering the core cryptographic algorithm, making it non-intrusive and implementation-agnostic. It 

can be deployed at the firmware or hardware abstraction level, and customized per device model or 

environment through retraining.  

 In summary, the results from Table 2, Table 3, and Figure 2 demonstrate a two-tier ML-based approach 

to securing PQC implementations: accurate, real-time side-channel detection via CNNs and LSTMs; and 

proactive trace obfuscation through GANs, effectively camouflaging leakage without significant 

performance trade-offs. Together, these results support the integration of machine learning as a standard 

layer of implementation-level protection in post-quantum cryptographic systems, particularly as they 

transition into practical hardware and embedded environments. 
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4.3 Adaptive Algorithm Switching Between FrodoKEM and Falcon 

While PQC algorithms offer strong mathematical resistance against quantum adversaries, different 

algorithms exhibit different trade-offs in performance, memory usage, and computational footprint. In 

constrained environments such as IoT devices or mobile systems, static selection of a single PQC scheme 

may lead to suboptimal or insecure operation when system conditions change. To address this, we 

introduced an RL-based decision engine that dynamically selects between FrodoKEM and Falcon based on 

runtime constraints such as CPU usage, memory availability, and latency tolerance. The RL agent observes 

system parameters and learns over time to choose the algorithm that optimally balances efficiency and 

security under current conditions. 

 

Table 4. RL-Based Algorithm Switching Performance 

Scenario 
Optimal Algorithm 

Chosen 
Accuracy 

Latency 

Reduction 

Convergence 

Episodes 

IoT Device (Low RAM) Falcon 94.3% 16.5% 48 

Gateway (High Load) FrodoKEM 91.2% 20.7% 53 

 

 
Figure 3. RL Accuracy Over Training Episodes for Adaptive Switching 

 

As shown in Table 4, the RL agent achieved high decision accuracy. In a simulated IoT scenario (low 

RAM, tight latency budgets), the agent correctly selected Falcon in 94.3% of cases. In a gateway device 

scenario with higher load but better memory, it selected FrodoKEM with 91.2% accuracy. These selections 

led to measurable latency reductions of up to 20.7%, validating that dynamic switching can enhance 

responsiveness compared to static configurations. 

Figure 3 plots the RL agent's decision accuracy over 50 training episodes. The curve demonstrates a 

steady increase in performance, converging toward over 90% accuracy by episode 40. This indicates that 

the agent can learn an optimal switching policy within a relatively short training period, even in a dynamic 

and noisy environment. Notably, the learning curve is smooth and stable, reflecting the robustness of the 

underlying state-reward design and feature representation of system metrics. 

These findings demonstrate the practical feasibility of real-time adaptive PQC, enabled by machine 

learning. Several implications are worth highlighting: Security-Aware Performance Optimization: 

Adaptive switching avoids locking a system into an inefficient algorithm (e.g., FrodoKEM in a low-

memory context) while still maintaining quantum resistance, making cryptography more scalable across 

platforms; Autonomous Cryptographic Decision-Making: The RL model operates without human input 

after training, enabling self-regulation of cryptographic policy in devices deployed in the field, particularly 

useful for decentralized or unmanned systems (e.g., drones, industrial sensors); Generalizability of 

Approach: Although this study uses FrodoKEM and Falcon, the switching framework can be generalized 

to other PQC schemes or even hybrid classical–post-quantum deployments.  

In conclusion, the results from Table 4 and Figure 3 validate the hypothesis that machine learning, 

particularly reinforcement learning, can be effectively applied to dynamically manage cryptographic 
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algorithm selection. This represents a novel step toward intelligent, context-aware cryptographic systems 

suitable for the post-quantum era. 

 

4.4 Cryptographic Forensics: SIKE Case Study 

Although SIKE was previously considered a promising isogeny-based post-quantum cryptographic 

candidate due to its compact key sizes and mathematical novelty, it was ultimately broken by a classical 

cryptanalytic attack. While this disqualifies it from further standardization efforts, it presents a valuable 

opportunity to explore how machine learning could have served as a predictive diagnostic tool, flagging 

subtle vulnerabilities before formal cryptanalysis emerges. To investigate this, we trained machine learning 

(ML) models on timing traces and execution profiles of SIKE key exchange operations, with a particular 

focus on scalar multiplications and isogeny path traversals. As shown in Table 5, the LSTM model achieved 

an accuracy of 91.4% in detecting anomalies from timing data. The model also demonstrated strong recall 

(0.89), which indicates its reliability in identifying sequences that deviate from the expected secure pattern. 

It is often a sign of potential leakage or deterministic behavior that can be exploited in an attack. 

 

Table 5. SIKE Leakage Prediction Accuracy 

Dataset Type Accuracy False Positive Rate Recall 

Side-Channel Traces 88.3% 5.1% 0.87 

Timing Anomalies 91.4% 6.3% 0.89 

 

 
Figure 4. Heatmap of the SIKE leakage cluster identified by CNN 

 

A second dataset of side-channel traces yielded slightly lower accuracy (88.3%). Still, it demonstrated 

promising early detection of patterns later confirmed to be associated with structural weaknesses exploited 

in the 2022 SIKE break. Notably, the false positive rate for both datasets remained under 6.5%, making 

these models suitable for research and deployment in automated evaluation frameworks. Figure 4 visualizes 

the LSTM-detected leakage clusters in the form of a heatmap. Brighter regions indicate a concentration of 

timing anomalies in specific subroutines, particularly during repeated isogeny walks and modular 

arithmetic operations. These clusters correlate with deterministic execution paths, precisely the subtle 

irregularity that cryptanalysts eventually exploited in the successful classical attack on SIKE. 

These results illustrate several vital insights: Predictive Value of ML-Based Forensics: Even in the 

absence of a known attack, machine learning models can identify "cryptographic stress points”, patterns of 

behavior that are statistically inconsistent or overly predictable, and which may indicate deeper 

mathematical or implementation-level flaws; Support for Cryptographic Vetting: Formal security proofs 

provide asymptotic guarantees but may not account for real-world optimizations or microarchitectural 

leakage. ML-based analysis can augment existing vetting tools to catch overlooked aspects before 

deployment. Postmortem Utility for Future PQC Design: SIKE's failure underscores the need for diverse 

evaluation approaches. Our method offers a postmortem blueprint that can be applied to new isogeny-based 

or exotic schemes, reinforcing the idea that implementation behavior must be treated as part of the threat 

model, not just the underlying mathematics; Non-Invasive Evaluation: Unlike mathematical proofs or 

exhaustive test vectors, ML-based forensic analysis can be carried out with minimal knowledge of the 

cryptographic internals, making it especially useful in black-box auditing of proprietary or third-party 
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implementations. The results from Table 5 and Figure 4 strongly support the argument that machine 

learning can serve as an early warning system for cryptographic fragility, complementing traditional 

cryptanalysis and formal verification. Although SIKE has been deprecated, this analysis demonstrates the 

broader utility of ML-based cryptographic forensics in securing the future of PQC. 

In summary, the experimental results across all modules of this study consistently demonstrate that 

ML can play a pivotal role in enhancing various aspects of PQC systems. From performance optimization 

and side-channel defense to algorithm selection and forensic analysis, ML enables capabilities that surpass 

those of static or traditional techniques. The key findings are summarized as follows: (1) ML techniques, 

such as Bayesian Optimization and Genetic Algorithms, achieved substantial reductions in key generation 

time, with 23.6% for FrodoKEM and 14.8% for Falcon, while maintaining zero degradation in 

cryptographic correctness or success rates. This supports the viability of ML as a runtime co-optimizer for 

PQC schemes; (2) Deep learning models, particularly CNNs and LSTMs, demonstrated high effectiveness 

in detecting power and timing anomalies, with accuracies exceeding 91%. Furthermore, GAN-based trace 

obfuscation significantly reduced leakage detectability by lowering the SNR by ~40%, providing a 

dynamic, ML-driven layer of physical security; (3) A reinforcement learning–based decision engine 

accurately selected the optimal PQC algorithm (FrodoKEM or Falcon) under different system constraints 

with over 92% accuracy, leading to latency reductions of up to 20.7%. This confirms ML's potential in 

enabling self-adaptive cryptographic systems that optimize security-performance trade-offs in real-time; 

(4) ML models trained on timing and leakage data from the broken SIKE algorithm detected anomalous 

patterns before the discovery of formal attacks. These results highlight the utility of ML in cryptographic 

vetting and forensic evaluation, which is beneficial not only for deployment but also for candidate screening 

during the PQC design phase. 

 

 
Figure 5. Summary of ML-PQC integration benefits 

 

Figure 5 compares key performance and security indicators before and after ML integration, showing 

improvements in every category. Collectively, these results support the central thesis of this study: that 

machine learning can enhance PQC algorithms in theoretical design and practical implementation, 

resilience, and adaptability. As the field of PQC moves toward standardization and real-world deployment, 

ML-based techniques offer a complementary and scalable approach to address the remaining engineering, 

security, and performance challenges. 

 

5. CONCLUSION 

The emergence of quantum computing presents a transformative challenge to modern cryptographic 

systems, necessitating a global shift toward PQC standards. While several PQC algorithms have been 

proposed and evaluated for their theoretical resistance to quantum adversaries, practical deployment 

remains hindered by issues of computational overhead, side-channel vulnerability, and environmental 

adaptability. This study addressed these challenges by integrating ML into the design and implementation 

of three representative PQC algorithms: FrodoKEM, Falcon, and SIKE, each offering unique structural and 

operational characteristics. The integration of ML provided measurable improvements across four key 

domains: (1) Performance Optimization: ML-driven parameter tuning significantly reduced key generation 

and encapsulation times, enhancing deployability in real-time and resource-constrained environments; (2) 

Side-Channel Attack Detection and Obfuscation: Deep learning models accurately identified leakage 
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patterns, while generative models effectively masked them, offering lightweight, non-intrusive security 

layers; (3) Adaptive Algorithm Switching: Reinforcement learning enabled dynamic selection between 

algorithms based on system conditions, reducing latency and improving operational efficiency; (4) 

Cryptographic Forensics: ML models were able to identify implementation-level anomalies in SIKE before 

formal cryptanalysis, demonstrating the potential of ML for early-stage vulnerability discovery and 

algorithm vetting.  

These contributions collectively demonstrate that ML is not merely an auxiliary tool but a core enabler 

of robust, intelligent, and adaptive PQC ecosystems. ML enhances security and usability, making PQC 

more practical for widespread adoption across heterogeneous computing platforms. While the findings of 

this study are promising, several avenues remain for future exploration: Adversarial Robustness of ML 

Models: As ML becomes embedded in cryptographic infrastructure, it becomes a target. Future work must 

address how to secure ML models themselves against poisoning, evasion, and adversarial attacks; Federated 

and Privacy-Preserving Learning: In distributed systems, such as IoT networks or smart grids, federated 

learning could allow secure model training without exposing sensitive cryptographic operations or 

hardware behavior; Integration with Hybrid PQC Architectures: Future cryptographic systems may 

combine classical and post-quantum algorithms. ML can play a role in optimizing this hybrid orchestration 

based on security posture and system performance. Standardization and Real-World Testing: 

Collaborations with hardware vendors and standards bodies (e.g., NIST) are needed to validate these ML-

enhanced approaches under real deployment conditions, including power-limited, offline, and hostile 

environments. In closing, this research advocates for a tight coupling between cryptography and intelligent 

systems, where machine learning enhances the security of data and enables adaptation to a rapidly evolving 

threat landscape. As post-quantum cryptography enters critical phases of global standardization, the fusion 

of ML and PQC represents a forward-looking path to sustainable and resilient cybersecurity in the quantum 

era. 
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