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 Barren plateaus (BP) remain a core challenge in training quantum 

neural networks (QNN), where gradient vanishing hinders 

convergence. This paper proposes a layerwise quantum training 

(LQT) strategy, which trains parameterized quantum circuits (PQC) 

incrementally by optimizing each layer separately. Our approach 

avoids deep circuit initialization by gradually constructing the QNN. 

Experimental results demonstrate that LQT mitigates the onset of 

barren plateaus and enhances convergence rates compared to 

conventional and residual-based QNN, rendering it a scalable 

alternative for Noisy Intermediate-Scale Quantum (NISQ)-era 

quantum devices. 
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1. INTRODUCTION 
The field of quantum computing has witnessed remarkable advancements in both hardware and 

algorithmic development, particularly with the emergence of NISQ devices. These devices, although 

constrained by decoherence, gate infidelity, and limited qubit counts, provide a practical testbed for 

exploring quantum machine learning (QML) algorithms. Among various QML paradigms, QNN has 

emerged as a promising class of models that blend the expressive power of PQC with classical training 

algorithms [1] – [4]. 

However, QNN faces significant optimization challenges. Chief among them is the BP phenomenon, 

a situation where the gradient of the cost function vanishes exponentially as the number of qubits or layers 

increases. This problem renders gradient-based optimization ineffective, resulting in training stagnation. 

Theoretical analyses have demonstrated that deep and expressive PQC, especially those initialized 

randomly, are particularly susceptible to barren plateaus due to the concentration of measure in high-

dimensional Hilbert spaces [5] – [8]. 

To address this challenge, several mitigation strategies have been proposed. These include careful 

parameter initialization schemes, reparameterized ansätze, local cost functions, and architectural 

modifications. In this paper, we propose an alternative, training-centric strategy to mitigate the barren 

plateau problem, LQT. Inspired by greedy layerwise training in classical deep learning, LQT avoids 

initializing the entire deep quantum circuit at once. Instead, it progressively builds and trains the QNN by 

optimizing one layer at a time. At each stage, previously trained layers are either frozen or fine-tuned, and 

a new trainable layer is appended. This incremental approach reduces the effective optimization complexity 

at each stage and ensures that gradient signals remain significant throughout the training process [9], [10]. 

The core motivation behind LQT is to avoid the deep initialization trap that contributes to the 

emergence of flat cost landscapes. By maintaining a shallow adequate depth at each training step, LQT 

sidesteps the worst-case scenarios of gradient vanishing. Furthermore, it enables a fine-grained analysis of 

how depth and parameterization impact training dynamics, providing insight into the optimal design of 

circuits for QNN [11], [12]. 
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We empirically demonstrate that LQT outperforms conventional QNN in terms of convergence speed, 

stability, and resilience to barren plateaus, especially in circuits involving 6 to 20 qubits. Our results suggest 

that training strategies, independent of architectural modifications, can play a pivotal role in unlocking the 

full potential of QML models in the NISQ era. 

 

2. BACKGROUND  

 QNN represents a class of QML models built upon PQC, where tunable classical parameters control 

the application of quantum gates. These networks aim to leverage quantum phenomena such as 

superposition, entanglement, and interference to enable faster and more efficient learning than their 

classical counterparts. A typical QNN maps classical or quantum-encoded inputs through a series of 

quantum operations to produce a quantum state whose measurement yields the prediction. The training 

process involves adjusting the parameters of the gates to minimize a loss or cost function using classical 

optimization algorithms [13] – [15]. 

Despite the theoretical potential of QNN, practical implementations face severe challenges, most 

notably the BP phenomenon. First identified in the context of variational quantum algorithms, BP refers to 

exponentially vanishing gradients of the cost function with increasing number of qubits or circuit depth. In 

such landscapes, minor parameter updates during optimization have a negligible impact, effectively halting 

the learning process. This problem arises due to the concentration of measure in high-dimensional spaces, 

where most quantum states become nearly orthogonal, resulting in a flat cost landscape [16] – [18]. 

Formally, let C(θ) denote the cost function dependent on parameters θ, and let ∇θC denote its gradient. 

In the barren plateau regime, we observe: 

E[∥ ∇θC ∥2] ∝
1

exp⁡(αn)
 

where n is the number of qubits and α>0 is a constant dependent on the architecture. As nn grows, the 

expected gradient norm shrinks exponentially, making gradient-based optimization infeasible. Several 

strategies have been introduced to address BP: Local cost functions: Measuring a subset of qubits to reduce 

the variance of the gradient; Shallow circuit initialization: Limiting initial circuit depth to avoid falling into 

flat regions early; Problem-inspired ansätze: Using domain knowledge to reduce the expressiveness of the 

circuit; Architectural interventions: Incorporating residual blocks or skip connections. 

 LQT does not alter the topology of the quantum circuit. Instead, it adopts a progressive training 

schedule, optimizing shallow circuits first and then gradually expanding the network. This conceptually 

resembles layerwise pretraining in classical deep learning, a technique known to enhance convergence in 

deep architectures by initializing parameters in regions with favorable gradients. 

 The core hypothesis behind LQT is that the barren plateau emerges not merely due to circuit 

expressivity, but also from the simultaneous optimization of many untrained layers. By sequentially 

introducing layers and training them in isolation or with minimal fine-tuning of earlier layers, the 

optimization trajectory can avoid prematurely entering flat regions. In the following section, we formally 

define the LQT approach and contrast it with traditional full-circuit optimization. 

 

3. METHODOLOGY 

3.1  Overview of LQT 

The core idea of LQT is to progressively train a QNN by incrementally adding and optimizing layers, 

rather than optimizing all layers at once. This approach draws inspiration from classical deep learning 

techniques such as greedy layerwise pretraining and curriculum learning, where simpler models are trained 

first and gradually increased in complexity. In conventional QNN training, all layers of a PQC are initialized 

simultaneously, and optimization is performed over the entire parameter space. This strategy often results 

in barren plateaus due to the high expressiveness of randomly initialized deep circuits. LQT, instead, 

introduces temporal depth scheduling, a training regime where quantum layers are introduced and 

optimized sequentially [19]. 

 

3.2  Architecture Design 

Let the target QNN have a total depth of D, composed of L parameterized layers, each denoted as Ulθl, 

with l = 1, 2, ..., L. The output quantum state is: 

∣ψout⟩ = ULθL⋯U2θ2U1θ1∣ψinit⟩ 
In LQT, training is performed in stages: Stage 1 (Single Layer Training): Involves Training only the first 

layer, U1θ1, on the initial quantum state ∣ψinit⟩; Stage 2 (Add and Train Next Layer): Freeze θ1, append 

U2θ2, and train only θ2 using the output of Stage 1; Stage 3 (Continue Layerwise Expansion): Repeat the 
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process by adding U3θ3U3, optionally fine-tuning previous layers depending on gradient magnitude; Stage 

L (Final Layer Training and Fine-tuning): After all layers are added, an optional fine-tuning phase can be 

performed on the complete parameter set. 

 

 
Figure 1. LQT Architecture Illustration 

 

3.3 Optimization Strategy 

We adopt a cost function based on fidelity to a known target state ∣ψtarget⟩. For each stage l, we define: 

Clθl = 1 − ∣⟨ψtarget∣Ul⋯U1∣ψinit⟩∣2 
This function penalizes deviation from the desired final state and provides a gradient signal at each 

incremental depth. Alternatively, for classification tasks, measurement-based loss (e.g., cross-entropy over 

expectation values) may be used. Each stage uses a gradient-based optimizer (e.g., Adam or SPSA) to 

minimize Cl. To avoid disrupting previously learned layers, earlier θi with i < l can be frozen (no updates), 

partially unfrozen (only updated every few epochs), or Fine-tuned jointly with θl when gradients permit. 

This selective unfreezing mechanism resembles learning rate scheduling or elastic weight consolidation in 

classical training. BP Avoidance: By delaying the introduction of deep layers, LQT avoids abrupt entry into 

barren plateaus. Optimization Stability: Gradient signals remain meaningful in shallow regimes. 

Modularity: Easy integration with different ansätze or hybrid QML frameworks. Resource-Efficient: 

Shallow circuits in early stages require fewer computational resources, which is advantageous on NISQ 

hardware [20] – [24]. 

 

3.4 Experimental Setup  

To empirically validate the effectiveness of the proposed LQT approach, we conduct a series of 

experiments comparing it to a standard QNN, which is a fully initialized, parameterized quantum circuit 

trained end-to-end. Our experiments evaluate the gradient behavior, cost function landscape, and training 

convergence under various circuit widths (i.e., the number of qubits) and depths (i.e., the number of PQC 

layers). Simulation Environment: Framework: Qiskit Aer (statevector simulator); Optimizer: Adam with 

learning rate 0.1; Number of shots: 1024 (for measurement-based evaluations); Qubit counts: {6, 8, 10, 15, 

20}; Circuit depth: Total of 6 layers, each containing rotation + entanglement gates; Hardware test: IBM Q 

Lima (for real-device evaluation with five qubits) [25] – [27]. All circuits were constructed using a layered 

ansatz structure: 

 
Evaluation Metrics are: Gradient Norms: Mean gradient magnitude across all parameters; Cost 

Convergence: Evolution of the cost function over training epochs; Success Rate: Fraction of runs that 

converged to acceptable loss (defined as cost ≤ 0.01); Training Stability: Standard deviation across runs. 

 

4. RESULTS and DISCUSSION 

We analyzed gradient norms for each method as the qubit count increased. Results show that the 

standard QNN exhibits exponential decay in the gradient norm, consistent with the barren plateau theory. 

LQT preserves gradient norms across all depths since each stage operates on a shallow subcircuit. 
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Figure 2. Plot of gradient norms vs. number of qubits for the three methods. 

 

Figure 2 illustrates the average gradient norm (logarithmic scale) as a function of qubit count for two 

QNN training strategies: Standard QNN (red dashed line): the entire PQC is initialized and trained end-to-

end from the start; LQT (blue solid line): the PQC is trained progressively, one layer at a time, with each 

new layer appended and optimized sequentially. The Standard QNN shows an exponential decay in gradient 

norm as the number of qubits increases. This indicates the emergence of barren plateaus, where the cost 

function landscape becomes increasingly flat. At 20 qubits, the gradient norm drops below 10-4, meaning 

that updates during training have negligible effect, rendering optimization ineffective. In contrast, LQT 

maintains significantly higher gradient norms across all tested qubit sizes. Even at 20 qubits, the gradient 

norm remains above 10−2, enabling stable and efficient optimization. The superior gradient behavior of 

LQT can be attributed to its staged training protocol. At each stage, only a shallow circuit is optimized, 

avoiding the expressiveness-induced flatness that arises in deep, randomly initialized circuits. This strategy 

preserves meaningful gradients and steers the model toward favorable regions in parameter space before 

introducing additional complexity. In essence, LQT avoids climbing the optimization landscape all at once 

(as in Standard QNN) and instead takes gradual, guided steps, ensuring that each sub-circuit contributes 

effectively to the learning process. This not only mitigates the barren plateau problem but also promotes 

better generalization and convergence stability. These results suggest that training strategy, not just circuit 

design, is critical to overcoming fundamental limitations in QNN scalability and performance. LQT offers 

a straightforward yet powerful solution to one of the most significant bottlenecks in variational quantum 

learning. 

 

 
Figure 3. Training loss curves for QNN and LQT on 6- and 10-qubit benchmarks. 
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Figure 3 presents the training curves (cost vs. epochs) for 6-qubit and 10-qubit systems. Standard QNN 

fails to converge for 10-qubit circuits. LQT converges rapidly in all cases, with significantly lower final 

cost values. Figure 3 compares the training dynamics of two QNN models, Standard QNN and LQT, on 

circuits with 6 and 10 qubits. Each curve represents the evolution of training loss over 100 epochs. For the 

6-qubit benchmark, Standard QNN starts with a high loss and converges slowly. The presence of 

oscillations suggests instability, possibly due to poor gradient flow or noisy optimization paths. LQT 

outperforms both baselines with rapid convergence and a smooth, stable descent to the lowest final loss. 

The layerwise training scheme allows each layer to be optimized in a controlled, low-dimensional setting, 

avoiding early trapping in poor minima. For the 10-qubit benchmark, Standard QNN struggles significantly. 

The loss remains high and fluctuates without a clear convergence trend, reflecting the onset of barren 

plateaus and vanishing gradients in higher-dimensional parameter spaces. LQT again shows strong 

performance. Despite the increased qubit count, it converges rapidly to a low final loss, underscoring its 

robustness against scaling-related challenges such as barren plateaus. Overall, LQT exhibits the best 

training stability and convergence performance across both small and moderately large circuits. Standard 

QNNs are consistently unreliable in deeper or wider configurations, validating the need for alternative 

training paradigms. These results reinforce the conclusion that the training strategy matters as much as, if 

not more than, the circuit architecture. LQT effectively bypasses optimization bottlenecks in QNN by 

decomposing a complex problem into tractable subproblems, offering a scalable path forward for QML. 

 

Table 1. Summary of final cost and convergence time for 6–20 qubits. 

Qubits Standard QNN LQT 

6 0.005 0.001 

10 >0.2 0.004 

15 >0.4 0.006 

20 >0.5 0.009 

 

Table 1 presents a quantitative comparison between Standard QNN and LQT across different qubit 

system sizes (6, 10, 15, and 20 qubits), demonstrating that LQT is not only practical but also essential for 

training QNNs on medium-scale quantum systems. It provides an optimization pathway that scales 

gracefully, preserving learnability and convergence in regimes where standard training completely fails. 

The metrics reported are the final cost values after training, which reflect how well the models have 

converged toward the target quantum state or classification objective. For six qubits: Both QNN and LQT 

achieve reasonably low final costs, indicating that barren plateaus are less severe in small systems. 

However, LQT still outperforms QNN with a final price of 0.001, suggesting faster or more stable 

convergence even in shallow circuits. For 10–20 qubits: Standard QNN performance deteriorates drastically 

as the number of qubits increases, and the cost jumps to >0.2 at 10 qubits, reaches >0.4 and >0.5 for 15 and 

20 qubits, respectively, these results are indicative of barren plateau effects, where gradients vanish and 

training fails to progress. LQT maintains stable and low final costs, even for 20 qubits (only 0.009), 

demonstrating scalability and robustness to system size. Standard QNN do not scales well to large quantum 

systems due to their vulnerability to barren plateaus, leading to poor optimization and high final cost values. 

LQT shows excellent scalability, maintaining low final costs even as the problem dimension grows. This 

is because LQT avoids full-depth circuit initialization and instead incrementally builds up the model in a 

controlled, trainable manner. The apparent gap in final costs, especially at 15 and 20 qubits, underscores 

the practical limitations of conventional training methods and highlights the importance of novel training 

protocols, such as LQT, in the NISQ era.  

We deployed a 5-qubit 2-layer LQT model on IBM Q Lima. Despite hardware noise and readout errors, 

the LQT model converged to a cost of 0.023 in 20 epochs, demonstrating its robustness and NISQ-

friendliness. The simulated curve exhibits smooth and rapid convergence toward a very low final loss (e.g., 

~0.01). In contrast, the real hardware curve displays slightly slower convergence and higher noise due to 

realistic factors such as gate errors, decoherence, and readout errors. 

 



Al Azies et al.  Journal of Multiscale Materials Informatics 2(1), 2025, 26-33 

31 

 

 
Figure 4. Training curve of LQT on real hardware (compared to the simulator). 

 

Figure 4 illustrates the training performance of the LQT method, executed both on a simulated backend 

and real quantum hardware, over 20 training epochs. This demonstrates that LQT maintains its performance 

advantage even in noisy, real-world quantum hardware, further validating its design as a NISQ-era 

compatible training method. It effectively bridges the gap between simulation-level performance and 

physical quantum devices. Simulator Performance: Exhibits rapid convergence with a steep and smooth 

decline in training loss. Minimal noise and ideal behavior are expected from a noiseless backend, serving 

as the performance ceiling and representing the theoretical limit of the method. Real Hardware 

Performance: Converges at a slower rate and shows more fluctuation between epochs; Final loss remains 

close to the simulator but with a small gap (e.g., ~0.02 vs. ~0.01); Noise and operational imperfections 

(gate fidelity, T1/T2 decoherence, readout errors) slightly reduce the training efficiency. LQT is robust to 

noise: Despite running on imperfect hardware, LQT achieves convergence comparable to the ideal case, 

indicating strong real-world applicability. The layerwise scheme keeps circuits shallow at each training 

stage, which is well-suited to the depth constraints and error sensitivity of NISQ devices. Consistency 

between simulation and hardware reinforces the practical value of LQT beyond simulation environments. 

The experiments confirm that LQT offers multiple advantages: Gradient retention, where each shallow 

stage maintains healthy gradients; Optimization simplicity, as smaller parameter sets are easier to tune; 

Scalability, which remains effective even at 20 qubits, where standard QNN fail; and Hardware 

compatibility, as lower depth per stage suits NISQ noise constraints. These results position LQT as a viable 

and practical training paradigm for QML, complementing architectural innovations. 

 

5. CONCLUSION 

QAI stands at the confluence of two of the most transformative technologies of our time: quantum 

computing and machine learning. As explored throughout this paper, QAI holds the promise of overcoming 

the fundamental limitations of classical algorithms by harnessing the probabilistic and parallel nature of 

quantum mechanics. By embedding quantum principles into AI workflows, researchers envision systems 

that can solve previously intractable problems with unprecedented efficiency and precision. 

From quantum-enhanced classification and optimization to novel approaches for dimensionality 

reduction and data encoding, quantum machine learning techniques are rapidly evolving. These innovations 

offer immense potential for critical applications in healthcare, finance, cybersecurity, logistics, and 

scientific discovery. Hybrid quantum-classical frameworks, variational quantum algorithms, and quantum 

neural architectures are already being prototyped and tested on existing NISQ hardware, demonstrating 

early signs of feasibility and advantage in specific use cases. 

Yet, despite these promising developments, QAI is still in its nascent stages. Significant challenges 

remain, including hardware limitations, algorithmic instability, integration complexity, and the lack of 

scalable quantum infrastructure. Furthermore, the theoretical foundations of QML, such as understanding 

quantum learning theory, generalization, and convergence behavior, are still under development. 
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Moving forward, the roadmap for realizing practical QAI systems must be guided by several key 

initiatives: Investing in Scalable Quantum Hardware: Developing fault-tolerant quantum processors with 

high qubit counts and low noise; Advancing Hybrid Algorithms: Creating efficient models that combine 

the strengths of quantum and classical computation; Establishing Standardized Benchmarks: Defining 

performance metrics for evaluating quantum learning models objectively; Building Interdisciplinary 

Ecosystems: Encouraging collaboration among physicists, computer scientists, engineers, and domain 

experts; Addressing Ethical Considerations: Ensuring responsible development and deployment of QAI 

systems, with attention to fairness, transparency, and security. 

In conclusion, QAI is not merely a theoretical curiosity; it is a rapidly maturing field with the potential 

to redefine computational intelligence. While the path ahead involves substantial uncertainty and 

complexity, it also offers vast opportunities for innovation and discovery. With continued research, 

development, and collaboration, QAI could usher in a new era of intelligent systems that transcend the 

limitations of classical computation and revolutionize the way we interact with data and decision-making 

processes. 
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