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 This study evaluates gate-based quantum machine learning (QML) 

models, including the Variational Quantum Classifier (VQC) and 

Quantum k-Nearest Neighbors (QkNN), on the QM9 quantum 

chemistry dataset for binary classification of molecular electronic 

properties. Using IBM Qiskit, both models were tested on simulators 

and real quantum hardware. Classical models (LightGBM, SVM, 

MLP) served as benchmarks. Results show classical models 

outperform quantum ones, with LightGBM achieving the highest 

AUC-ROC (0.901). However, VQC on simulators achieved a 

competitive AUC of 0.781, and real hardware still yielded 

performance above that of chance. Despite hardware constraints, 

quantum models demonstrated learning capability. The findings 

support hybrid quantum-classical systems as a promising near-term 

approach while quantum hardware continues to evolve. 
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1. INTRODUCTION 
Quantum computing has emerged as a transformative paradigm poised to redefine the limits of 

computational capability. Rooted in the principles of quantum mechanics, namely superposition, 

entanglement, and quantum interference, quantum computers offer theoretical advantages over classical 

systems in solving specific classes of problems. Within the quantum computing landscape, two principal 

architectures have gained traction: quantum annealing and gate-based quantum computing [1]–[3]. 

Quantum annealing, as demonstrated by systems like D-Wave, has shown potential in optimization 

and classification tasks, including recent applications in drug discovery using ADMET datasets. These 

studies have primarily utilized models such as Quantum Boosting (QBoost) and Quantum Support Vector 

Machines (QSVM), providing early evidence that quantum-enhanced machine learning can produce 

competitive results compared to classical approaches in specific contexts [4], [5]. 

However, gate-based quantum computing, which is more general-purpose and aligns with the quantum 

circuit model, remains comparatively underexplored in real-world machine learning applications. This 

architecture utilizes quantum gates arranged into circuits to perform computations, enabling greater 

flexibility in algorithm design and broader compatibility with quantum algorithms, such as the Quantum 

Fourier Transform, Quantum Phase Estimation, and the Variational Quantum Eigensolver [6], [7]. 

Gate-based quantum machine learning (QML) approaches, such as the Variational Quantum Classifier 

(VQC) and Quantum k-Nearest Neighbors (QkNN), have shown theoretical promise; however, their 

practical effectiveness on real datasets, particularly in scientific domains like chemistry, has not been 

comprehensively assessed. In particular, datasets derived from quantum chemical calculations, such as 

QM9, represent a valuable but underutilized testbed for evaluating the performance of these models  [8], 

[9]. 

This study aims to fill this gap by applying gate-based quantum machine learning (QML) models to 

the QM9 dataset, focusing on a binary classification problem involving molecular electronic properties. We 
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evaluate the performance of these quantum models on both simulators and real IBM Quantum hardware, 

and benchmark them against classical machine learning models. This investigation aims to assess the 

current feasibility of gate-based QML for practical tasks in computational chemistry and to identify its 

limitations and future potential. 

 

2. METHODS 

 To assess the feasibility and performance of gate-based quantum machine learning models in a real-

world scientific domain, we selected the QM9 dataset, a widely used benchmark dataset in quantum 

chemistry and molecular property prediction tasks. The QM9 dataset consists of approximately 134,000 

small organic molecules composed of hydrogen (H), carbon (C), oxygen (O), nitrogen (N), and fluorine 

(F). Each molecule contains up to 9 heavy atoms (non-hydrogen atoms), and its molecular structure is 

represented using SMILES (Simplified Molecular Input Line Entry System) notation. The dataset includes 

19 quantum chemical properties computed using density functional theory (DFT) at the B3LYP/6-

31G(2df,p) level of theory. These properties range from dipole moments and polarizabilities to 

thermodynamic quantities and orbital energy gaps. For this study, we reformulate a regression problem into 

a binary classification task. Specifically, we use the HOMO–LUMO gap (energy difference between the 

highest occupied and lowest unoccupied molecular orbitals), which is an essential indicator of a molecule's 

electronic stability and reactivity. To create a binary classification target: Molecules with a HOMO–LUMO 

gap above the dataset median are labeled as Class 1 (high-gap); Molecules with a gap below the median 

are labeled as Class 0 (low-gap). This approach ensures a balanced dataset for classification and reflects a 

meaningful scientific criterion. The dataset is randomly divided into three parts: a training set comprising 

70% of the data, a validation set comprising 15% of the data, and a test set containing the remaining 15% 

of the data. Stratified sampling is applied to preserve class balance in all subsets. The split is consistent 

across all models (classical and quantum) to ensure fair comparison. The use of a quantum chemistry 

dataset, such as QM9, provides a unique and challenging benchmark. Unlike typical datasets in finance or 

image classification, QM9 involves continuous-valued molecular properties derived from expensive 

simulations. This makes it well-suited for evaluating the precision and robustness of quantum machine 

learning models designed to capture nuanced physical and chemical phenomena [10]–[15]. 

 Effective preprocessing and feature engineering are crucial to the performance of both classical and 

quantum machine learning models, particularly when working with structured scientific data,  such as 

molecular graphs. A SMILES string represents each molecule in the QM9 dataset. To ensure consistency 

and correctness: SMILES strings are canonicalized using RDKit; Molecules are sanitized to correct valence 

issues, remove invalid structures, and disconnect salts; Inorganic molecules or those with parsing errors are 

discarded (<0.5% of data). This process guarantees that all chemical inputs are valid, standardized, and 

suitable for feature extraction. We extract numerical features from each molecule to serve as input vectors 

for machine learning models. Two types of feature representations are used: Classical Descriptors (for 

classical and quantum models): RDKit Descriptors: Includes molecular weight, number of rotatable bonds, 

logP, and more; Morgan Fingerprints: 1024-bit binary vectors based on circular substructures; 2D 

Descriptors: Topological indices, partial charges, and other physicochemical properties. These features are 

extracted using molfeat and rdkit.Chem.Descriptors [16]–[20]. 

 Graph-Based Embeddings (optional for classical models): GIN (Graph Isomorphism Network) 

embeddings are generated from molecular graphs to capture structural information; These embeddings are 

explored as an optional enhancement in classical baselines but are not used for quantum models due to 

dimensionality limitations. 

 Quantum circuits can only handle low-dimensional input vectors due to qubit constraints and noise 

sensitivity. Therefore, we apply the following: Standardization: Features are zero-centered and scaled to 

unit variance; Principal Component Analysis (PCA) is used to reduce the feature dimension to 4, 6, or 8, 

depending on the quantum circuit configuration. The reduced vectors retain at least 95% of the variance in 

the original feature set, ensuring meaningful input while enabling compatibility with current quantum 

hardware. The reduced numerical vectors are encoded into quantum states using: Angle Encoding (Rotation 

Encoding): Each feature value is mapped to a rotation angle of a quantum gate (e.g., RX, RY); Amplitude 

Encoding (experimental): Not used in hardware tests due to the need for quantum state normalization and 

more complex circuit preparation. Encoding is applied within a fixed-depth variational circuit framework 

for training quantum classifiers [21]–[23]. 

 To provide a reliable performance benchmark for the quantum machine learning models, we implement 

several well-established classical machine learning algorithms. These models are trained and evaluated on 

the same features and dataset splits described in the previous section. The following classical models are 
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selected due to their proven effectiveness in molecular property prediction tasks:  LightGBM (LGBM): A 

gradient boosting framework based on decision trees, known for its speed and efficiency with large-scale 

structured data. Loss function: binary cross-entropy; Hyperparameters: optimized via randomized search; 

Feature importance used to evaluate descriptor contributions. Support Vector Machine (SVM) 

A kernel-based model suitable for binary classification. Kernel: Radial Basis Function (RBF); 

Regularization parameter C and kernel coefficient γ are tuned via grid search; Well-suited for small to 

medium datasets with clear decision boundaries. Multilayer Perceptron (MLP): A fully connected neural 

network trained using backpropagation. Architecture: input layer → two hidden layers (64, 32) → output 

layer; Activation: ReLU for hidden layers, sigmoid for output; Optimizer: Adam, with learning rate tuning; 

Early stopping applied to prevent overfitting [24]–[27]. 

 All classical models are trained and validated using 5-fold cross-validation, ensuring a fair comparison 

and robustness to overfitting. Each fold maintains the original class distribution via stratified sampling. 

Primary metric: AUC-ROC (Area Under the Receiver Operating Characteristic Curve), chosen for its 

sensitivity to class imbalance and threshold independence. Secondary metrics: accuracy, precision, recall, 

and F1-score, reported for completeness. Feature Compatibility: LightGBM and MLP use the full feature 

sets (RDKit + fingerprints). SVM uses PCA-reduced vectors (same as those used for quantum models) to 

ensure comparability in feature dimensionality. These classical models serve as a strong baseline for 

evaluating whether quantum machine learning methods, particularly VQC and QkNN, can match or exceed 

traditional approaches in performance, given equivalent preprocessing and data representation [28], [29]. 

 Gate-Based Quantum Models. This section introduces the two primary gate-based quantum machine 

learning models used in this study: the Variational Quantum Classifier (VQC) and Quantum k-Nearest 

Neighbors (QkNN). Both models are implemented using IBM Qiskit and evaluated on quantum simulators 

and real quantum hardware. The VQC is a supervised binary classification model built on a variational 

quantum circuit. It combines quantum data encoding with a parameterized quantum circuit (ansatz) and a 

classical optimizer. Circuit Architecture: Input encoding: Angle encoding is used, where each feature in the 

input vector is encoded as a rotation angle in a single qubit (e.g., RX or RY gate); Ansatz structure: The 

circuit contains alternating layers of parameterized single-qubit rotations and entangling CNOT gates; 

Depth: We experiment with 2–3 entanglement layers depending on qubit availability and hardware noise 

levels; Measurement: The expectation value of a Pauli-Z operator is measured on a designated qubit to 

produce a scalar output. Optimization: Objective function: Binary cross-entropy loss; Optimizers used: 

COBYLA, SPSA (Simultaneous Perturbation Stochastic Approximation); Gradient estimation: Performed 

using the parameter shift rule. The model is trained in a hybrid loop: the quantum circuit evaluates the loss 

and gradient estimates, while a classical computer updates the circuit parameters. The QkNN is a distance-

based classifier that compares the quantum state of a test sample to those of training samples and assigns a 

label via majority voting. State Preparation: Feature vectors are encoded into quantum states using unitary 

preparation circuits. Only a small number of training states are used due to circuit depth constraints and 

hardware decoherence. Distance Estimation: The SWAP test is used to estimate the inner product between 

quantum states |ψtest⟩ and |ψtrain⟩. The resulting overlap determines proximity in Hilbert space. 

Classification: The test sample is assigned the class label of the closest training sample or the majority label 

among the k closest samples. For efficiency, k is fixed to 1 or 3, depending on circuit execution time. 

Number of qubits: Limited to 4–6 due to feature dimension and hardware constraints. Noise mitigation: 

Applied readout error correction and limited transpilation depth. Execution time: Each circuit execution on 

real hardware is batched to manage queue delays. Hardware Execution: Simulator: Qiskit Aer (statevector 

and noisy backends). Real backend: IBMQ Jakarta (7-qubit system). Qubit layout: Mapped manually to 

reduce gate errors and connectivity issues. Both VQC and QkNN represent promising, albeit early-stage, 

gate-based quantum machine learning models [28]–[30].  

 

3. RESULTS and DISCUSSION 

This section presents the experimental setup and the comparative evaluation of classical and quantum 

models on the binary classification task derived from the QM9 dataset. The experiments were conducted 

using both quantum simulators and real quantum hardware. Experimental Setup: Classical models 

implemented in Python using scikit-learn and LightGBM. Neural networks (MLP) were built with PyTorch. 

Quantum models: Developed using IBM Qiskit with Aer simulators and execution on IBM Quantum's 

Jakarta 7-qubit backend. Hardware details: Qubit mapping: 4-dimensional PCA-reduced vectors mapped 

to 4 qubits; Shots per circuit: 1024; Backend: ibmq_jakarta (T1 ~80–100 µs, CNOT error rate ~1–2%). All 

models were trained and tested on the same dataset splits and evaluated using the same performance metrics. 
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The primary evaluation metric was the Area Under the Receiver Operating Characteristic Curve (AUC-

ROC), which captures the model's ability to distinguish between the two classes across thresholds. We also 

report accuracy, precision, and F1-score for completeness. 

 

Table 1. Models performance 

Model Feature Dim. Accuracy Precision F1-score 

LightGBM Full (512) 0.862 0.873 0.859 

SVM (RBF) PCA (6) 0.838 0.842 0.832 

MLPNN Full (512) 0.845 0.849 0.841 

VQC (simulator) PCA (4) 0.749 0.755 0.743 

VQC (hardware) PCA (4) 0.703 0.710 0.696 

QkNN (simulator) PCA (4) 0.695 0.701 0.688 

QkNN (hardware) PCA (4) 0.662 0.668 0.654 

 

 
Figure 1. AUC-ROC comparison of all evaluated models, highlighting the performance gap between 

classical algorithms (LightGBM, SVM, MLP) and quantum models (VQC, QkNN) on both simulators 

and real quantum hardware. 

 

Table 1 and Figure 1 collectively underscore both the potential and the current limitations of gate-

based QML models. Classical models, namely LightGBM, MLP, and SVM, consistently outperformed their 

quantum counterparts across all evaluation metrics. This performance gap aligns with expectations, given 

the maturity of classical optimization algorithms and the absence of hardware-induced noise. The VQC, 

when evaluated on a simulator, achieved a promising AUC-ROC of 0.781 using only four principal 

components, suggesting that even shallow quantum circuits can capture functional patterns in molecular 

data. 

However, the transition from simulation to real quantum hardware introduced a substantial 

performance decline. On IBMQ Jakarta, VQC’s AUC dropped to 0.734, primarily due to quantum noise, 

decoherence, limited qubit connectivity, and depth restrictions. These limitations are further exacerbated in 

the QkNN model, which exhibited the lowest performance on hardware (AUC = 0.667). Despite these 

challenges, both VQC and QkNN consistently achieved AUC scores well above the random baseline of 

0.5, demonstrating their capacity to generalize under constrained quantum resources. 

Dimensionality reduction played a pivotal role in making quantum models tractable. Due to hardware 

restrictions, feature vectors had to be reduced to 4 dimensions using PCA, allowing them to be encoded 

within the available qubit budget. While effective in maintaining model feasibility, this preprocessing step 

inevitably results in the loss of subtle but potentially valuable information. In contrast, classical models 

such as LightGBM and MLP fully exploited the high-dimensional feature space, utilizing over 500 

molecular descriptors and fingerprints, which likely contributed to their superior performance. 
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Another key consideration is execution efficiency. Quantum models, notably on real hardware, 

required several minutes per inference batch due to queue times, limited parallelism, and slow circuit 

execution. This is in stark contrast to classical models, which deliver results within milliseconds. Such 

latency renders current quantum approaches impractical for large-scale or real-time deployment but 

highlights the need for more efficient hybrid architectures and low-depth circuit designs. 

The observed performance gap between quantum simulators and real quantum processors further 

emphasizes the importance of near-term techniques such as error mitigation, transpilation optimization, and 

variational noise suppression. These methods are essential until fault-tolerant quantum computing becomes 

a viable option. 

Compared to annealing-based models like QBoost and QSVM, which are limited to solving quadratic 

unconstrained binary optimization (QUBO) problems, gate-based QML offers greater algorithmic 

flexibility. Techniques such as variational circuits and angle or amplitude encoding allow for more 

expressive and customizable architectures. Nonetheless, current gate-based models suffer from limited 

scalability, complex training workflows (e.g., hybrid classical-quantum optimizers), and substantial 

hardware overhead. 

Given these findings, hybrid quantum-classical models emerge as a promising intermediate strategy. 

In such systems, classical models could be leveraged for feature extraction, dimensionality reduction, or 

embedding generation, while quantum circuits could be reserved for classification layers or kernel-based 

transformations. Alternatively, quantum components could serve as weak learners within an ensemble 

framework, contributing diversity to final predictions. 

In conclusion, while gate-based QML models are not yet competitive with classical approaches in 

terms of accuracy or scalability, their demonstrated ability to learn under strict quantum constraints suggests 

meaningful progress. As quantum hardware improves and hybrid architectures mature, QML has the 

potential to become a valuable component in computational chemistry pipelines and beyond. 

 

4. CONCLUSION 

In this study, we evaluated the performance of gate-based QML models, namely the VQC and QkNN, 

on a real-world binary classification task derived from the QM9 quantum chemistry dataset. These models 

were benchmarked against classical machine learning methods such as LightGBM, SVM, and MLP to 

assess their current viability and future potential. Gate-based quantum models can learn meaningful 

decision boundaries, even when operating with only a few qubits and under constraints imposed by 

hardware noise. Classical models remain superior in accuracy, speed, and scalability, particularly in high-

dimensional and low-noise environments. Quantum hardware limitations, including qubit count, gate error, 

decoherence, and circuit depth, still significantly restrict the practical deployment of gate-based QML in 

applied domains. Dimensionality reduction is essential for making quantum circuits feasible; however, it 

leads to information loss that constrains classification performance. 

This work demonstrates one of the first practical applications of gate-based quantum machine learning 

to quantum chemistry datasets, using both simulators and real hardware. We provide a comparative analysis 

between quantum and classical methods under controlled preprocessing pipelines, highlighting the tradeoffs 

in performance, interpretability, and computational requirements. The study lays the foundation for hybrid 

quantum-classical integration, where quantum circuits enhance specific stages of a machine learning 

pipeline, such as feature transformation or decision aggregation. 

In future work, we will explore larger and more diverse datasets, including multi-class classification 

and regression tasks from molecular and materials science. Investigate noise-aware training methods, such 

as variational error suppression, transpilation optimization, and circuit compression. Develop hybrid 

models that combine quantum circuits with deep learning components or use quantum kernels in support 

vector architectures. Evaluate performance on upcoming fault-tolerant quantum hardware with higher 

coherence times and lower error rates. 

In conclusion, gate-based QML is not yet ready to replace classical machine learning in applied 

science, but it is no longer purely theoretical. With continued advancement in hardware and algorithm 

design, quantum-enhanced models may eventually become competitive tools for tasks in computational 

chemistry and beyond. 
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