

Journal of Computing Theories and Applications ISSN:3024-9104

DOI : 10.62411/jcta.14455 publikasi.dinus.ac.id/index.php/jcta/

Research Article

Hybrid Dynamic Programming Healthcare Cloud-Based
Quality of Service Optimization

Nengak I. Sitlong 1,*, Abraham E. Evwiekpaefe 2, and Martins E. Irhebhude 2

1 Faculty of Sciences, Computer Science Department, Federal University of Education (FUEP), Pankshin,
Plateau State 930001, Nigeria; e-mail : iliya_sitlong@yahoo.com

2 Faculty of Military Science and Interdisciplinary Studies, Computer Science Department, Nigerian Defence
Academy (NDA), Kaduna 700001, Nigeria; e-mail : aeevwiekpaefe@nda.edu.ng; mirhebhude@nda.edu.ng

* Corresponding Author : Nengak I. Sitlong

Abstract: The integration of Internet of Things (IoT) with cloud computing has revolutionized

healthcare systems, offering scalable and real-time patient monitoring. However, optimizing response

times and energy consumption remains crucial for efficient healthcare delivery. This research evaluates

various algorithmic approaches for workload migration and resource management within IoT cloud-

based healthcare systems. The performance of the implemented algorithm in this research, Hybrid

Dynamic Programming and Long Short-Term Memory (Hybrid DP+LSTM), was analyzed against

other six key algorithms, namely Gradient Optimization with Back Propagation to Input (GOBI), Deep

Reinforcement Learning (DRL), improved GOBI (GOBI2), Predictive Offloading for Network De-

vices (POND), Mixed Integer Linear Programming (MILP), and Genetic Algorithm (GA) based on

their average response time and energy consumption. Hybrid DP+LSTM achieves the lowest response

time (82.91ms) with an energy consumption of 2,835,048 joules per container. The outcome of the

analysis showed that Hybrid DP+LSTM have significant response times improvement, with percent-

age increases of 89.3%, 79.0%, 83.8%, 97.0%, 99.8%, and 99.94% against GOBI, GOBI2, DRL,

POND, MILP, and GA, respectively. In terms of energy consumption, Hybrid DP+LSTM outper-

forms other approaches, with GOBI2 (3,664,337 joules) consuming 29.3% more energy, DRL

(2,973,238 joules) consuming 4.9% more, GOBI (4,463,010 joules) consuming 57.4% more, POND

(3,310,966 joules) consuming 16.8% more, MILP (3,005,498 joules) consuming 6.0% more, and the

GA (3,959,935 joules) consuming 39.7% more. The result of ablation of the Hybrid DP+LSTM model

achieves a 47.05% improvement over DP-only (156.57ms) and a 70.64% improvement over LSTM-

only (282.41ms) in response time. On the energy efficiency side, Hybrid DP+LSTM shows 22.80%

improvement over LSTM-only (3,671,51 joules), but 7.34% underperformance compared to DP-only

(2,640,93). These research findings indicate that the Hybrid DP+LSTM technique provides the best

trade-off between response time and energy efficiency. Future research should further explore hybrid

approaches to optimize these metrics in IoT cloud-based healthcare systems.

Keywords: Cloud; Dynamic Programming; Energy Optimization; Fog/Edge Computing; Healthcare;

IoT; LSTM; Task Scheduling.

1. Introduction

As the Internet of Medical Things (IoMT) proliferates within healthcare, challenges
around latency and responsiveness have become increasingly critical, particularly in applica-
tions such as wearable vital sign monitoring, remote surgery, and real-time diagnostics [1].
Traditional IoT-to-cloud architectures often fail to meet stringent timing requirements due
to network delays, which has driven the shift toward fog/edge architectures and AI-based
scheduling for latency minimization [2]. The constraint with the deployment of fog/edge
architecture is the competition for scarce fog/edge resources among numerous IoT tasks on
the fog layer. Task offloading and load balancing remain the key strategies for resolving the
scarce resource constraint in the fog/edge layer. A formalized queuing and delay distribution

Received: August, 25th 2025

Revised: September, 20th 2025

Accepted: September, 23rd 2025

Published: September, 26th 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) licenses

(https://creativecommons.org/licen

ses/by/4.0/)

https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
mailto:iliya_sitlong@yahoo.com
mailto:aeevwiekpaefe@nda.edu.ng
mailto:mirhebhude@nda.edu.ng
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 116

model for three-tier IoT–fog–cloud systems was implemented by optimizing offloading prob-
abilities via a sub-gradient-based algorithm that minimizes the probability a task exceeds its
latency threshold [3]. Furthermore, Transformer PPO Task Offloading (TPTO), employs a
Transformer + PPO deep reinforcement learning model to schedule dependent tasks on edge
servers. TPTO achieves 30% lower latency than baseline heuristics (e.g., HEFT, Greedy) and
converges 2.5 times faster than traditional DRL techniques [4].

Metaheuristic scheduling approaches also play a significant role in optimizing latency in
IoT cloud-based systems. A Lightweight Secure Efficient Offloading Scheduling (LSEOS)
algorithm, leveraged on neighborhood search and adaptive deadlines to reduce latency and
overhead in fog environments [5]. Edge AI strategies such as federated learning (FedAvg,
FedDyn, Sub FedAvg) enable distributed model training close to IoMT devices, minimizing
latency by keeping inference local and reducing communication overhead [6]. On-device op-
timization techniques, such as pruning, quantization, and parallelization scheduling, are used
to reduce model size and accelerate inference on constrained edge hardware [1]. The Smart
Edge architecture unites ensemble machine learning models (voting-based classifiers) de-
ployed across the edge and cloud to predict diabetes risk in real-time. Ensemble voting en-
hances prediction accuracy by ~5% while achieving low latency over a hybrid infrastructure
[7]. Moreover, a technique called a hybrid CNN LSTM DL model was deployed at edge
nodes, communicating over 5G Ultra-Reliable Low-Latency Communication (URLLC) links
to support real-time patient monitoring with end-to-end latencies at 96.5% accuracy, nearly a
47% speedup over federated learning techniques [2]. Complementing ML strategies, tradi-
tional measures such as window-based rate control algorithms (WRCAs) have been utilized
in telesurgery and medical edge systems. These methods optimise for mean latency, jitter, and
peak-to-mean ratios to satisfy medical QoS constraints, outperforming other rate control
techniques, such as Battery Smoothing algorithms [8].

Furthermore, the Gradient-Based Optimization with Back Propagation to Input (GOBI)
algorithm [9] produced one of the best IoT cloud QoS with improved energy consumption
and reduced latency. This was achieved by feeding back the same result from a surrogate
neural network model to itself through a Monte Carlo simulation, thereby eliminating the
problem of local optima. The process converged after an undefined number of iterations
because the confidence level of the best response time is unknown [10]. The deficiency here
is that feeding the same data repeatedly into the same machine-learning algorithm does not
necessarily improve its accuracy; rather, it results in neural network data saturation, which
increases computational complexity and inefficiency by solving the same computation repeat-
edly—a situation described as “Overlapping Sub-Problems” [11]. In addition, the standard
medically guaranteed safety response time margin is set at 150 to 400 milliseconds [12].
However, the optimized IoT response time achieved by Tuli et al. (2021) was not within this
range as their result was in seconds and not milliseconds.

Medically, 10 ms is the standard response time approved for remote surgery procedures
and remote patient monitoring [13]. Previous optimization efforts, such as the MILP model,
achieved a 73% improvement compared to cloud-only IoT response times [14]. Building on
this, the present research aims to further enhance quality of service—specifically response
time and energy consumption—by proposing a hybrid model that combines Dynamic Pro-
gramming (DP) for analytical scheduling with Long Short-Term Memory (LSTM) for predic-
tive learning, deployed via transfer learning.

It should be noted that the evaluation of the proposed IoT Healthcare Fog–Cloud model
is conducted under simulated conditions. The experiments utilize the COSCO platform and
Bitbrains traces as benchmark datasets. While Bitbrains offers realistic cloud workload pat-
terns, the findings do not constitute direct testing in real healthcare infrastructure but rather
controlled simulations designed to approximate realistic operating conditions.

2. Related Works

A standard design for cloud-based IoT healthcare systems should encompass key fac-
tors, such as reliability, scalability, privacy, security, quality of service (QoS), and data storage,
as core implementation goals in developing the architecture of an IoT network [15]. Crypto-
security algorithms, such as the RSA encryption algorithm and Digital Signature Standard
(DSS), were utilized in all endpoints of IoT networks to provide security [16]. However, this
system is deficient in the speed of the feedback mechanism due to the design complexities of

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 117

the machine learning algorithm, which is deployed far from the edge computing side of the
system in the cloud. In an effort to minimize this effect, wearable devices were empowered
to perform processing and visualization of sensor data directly, providing prompt feedback
to the user. However, this poses an energy overhead on the processing IoT wearable device,
which is sustained by a battery power source [17].

The wearables were regarded as having low memory and processing capabilities, and the
healthcare data emanating from the sensors are better transferred and stored on a database
server, and subsequently extracted by medical personnel through the use of a mobile applica-
tion for medical advice [18]. This design utilized a Raspberry Pi to intercept data generated
by IoT sensors, such as temperature or ECG, and transfer it to the database server interface
via a mobile application, providing data access to healthcare advisers or medical doctors when
needed. The design tends to overlook key IoT performance metrics, which determine QoS,
such as security, latency, energy consumption, and bandwidth, as it focuses solely on provid-
ing adequate storage space on the database server. The security metrics were improved
through the implementation of a Message Queue Telemetry Transport (MQTT) broker,
which publishes ECG data to the web server [19].

Furthermore, a secure healthcare monitoring system that integrates Named Data Net-
working (NDN)- based IoT with the edge cloud has been proposed [20]. The system leverages
the benefits of NDN to expedite the retrieval of medical data and utilizes cyphers and signa-
tures to ensure that data is delivered securely. Quantitative analysis of the results indicates
that the system reduces medical data retrieval delay and cost by 28% and 52%, respectively.
The method was modified to include methods for protecting data through encryption and
secure key exchange, which authenticate patients using effective hashing of selected data [21].
This enables privacy protection while also considering the network's irregular occurrences by
providing redundancy to prevent data loss. A distributed platform, such as the cloud, offers
limitless computing resources and a wide range of services. However, utilizing these services
with minimum latency and delay is not guaranteed [22]. One of the prime components in
achieving optimal performance is ensuring high bandwidth for data transmission. To mini-
mize delay, a middleware layer known as “fog computing” is to be placed between Cloud and
IoT, the “fog computing” will achieve low latency for applications that are sensitive to delay,
such as the health sector [23]. As sensor nodes have constrained power backup, the design of
the fog-computing layer should be computationally light and consume minimal energy. To
conserve energy, the solution could be to exploit alternate forms of energy generation models
as well as use efficient techniques to program periodic sleep routines for the sensor nodes
[24]. The devices can enter a sleep mode if no observable sensing activity occurs within a
given period. End-to-end connectivity, low latency, and reliability-enhanced solutions in IoT
enable the simultaneous monitoring of vulnerable patients without requiring dedicated
healthcare staff [25].

Emerging machine learning technologies in wireless communications is delivering a great
service [26]. Reinforcement learning is a branch of machine learning in which an agent selects
an action from a provided list of actions. With every action, the agent receives a certain re-
ward, and depending on the action, it can be a positive or negative reward [27]. The agent
takes certain actions in the environment and learns from the consequences of those actions.
Reinforcement learning IoT based communication framework for healthcare applications was
used to check resource utilization for improve QoS, under this, IoT tasks generated were
passed through a neural network algorithm which assigns reward to the tasks based on the
critical state of such tasks, the task with the most critical state was prioritized and resources
allocated for required action to be taken, and consequently improved the IoT response time
of the healthcare system [28]. Similarly, the Median Attribute Deviation (MAD) of the CPU
utilization of the hosts was estimated, and select containers based on the Maximum Correla-
tion (MC) with other tasks [29]. However, such heuristic-based approaches fail to model
healthcare environments with dynamic workloads [30].

Evolutionary approaches like GA lie in the domain of gradient-free optimization meth-
ods. The GA method schedules workloads using a neural model to approximate the objective
value and a GA to reach the optimal decision. Moreover, nonlocal jumps can lead to a signif-
icant change in the scheduling decision, resulting in a high number of migrations [31]. This
effect was improved through Predictive Offloading for Network Devices (POND), a variant
of the Max-Weight approach [32]. POND uses constrained online dispatch with unknown

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 118

arrival and reward distributions [33]. The final decision is made using the Max-Weight ap-
proach, where the weights correspond to the expected reward values. To minimize objective
value, an objective score was provided as a negative reward [31]. Due to the inability of Max-
Weight approaches to adapt to volatile scenarios, their wait times are high.

Reinforcement learning-based methods have demonstrated robustness and versatility in
handling diverse workload characteristics and complex edge setups [34]. Such methods em-
ploy a Markovian assumption of the state, which is the scheduling decision at each interval.
Based on new observations of the reward signal, this explores its knowledge of the state space
to converge to an optimal decision [10]. The result obtained showed minimal improvement
in IoT response time. This research was enhanced to achieve a minimal latency of 30 to 50%
in IoT cloud response time through the use of a Greedy algorithm and Fuzzy Inference Re-
inforcement Learning (FIRL) [12]. The COSCO framework was used to implement GOBI,
and later enhanced with Monte Carlo simulation, which fed the output of a surrogate neural
network model back to itself to achieve GOBI*, thereby preventing the tendency to get stuck
at local optima when finding the optimal response time of the cloud [9]. This was developed
to leverage a seamless interface between the orchestration framework and simulation engine,
providing an interactive dynamic interface between AI models and resource metrics to opti-
mise QoS.

To meet the needs of IoT healthcare applications, it is necessary to maximize the use of
computing layers, such as edge, fog, and cloud layers. These layers offer various computing
capabilities, including processing, storage, and internet-based communication interfaces [35].
Consequently, scalable data analytics and reliable solutions to address the challenges of IoT
healthcare applications, such as reducing service execution time and energy consumption,
were provided through the use of an integrated edge-fog-cloud architecture [19]. When it
comes to placing IoT healthcare applications optimally, the emphasis is on the significance of
edge, fog, and cloud, while considering several performance metrics, including energy con-
sumption, service latency, resource usage, and security [36]. An integrated edge-fog-cloud
healthcare architecture was developed to reduce the energy consumption and service latency
of IoT healthcare applications. The results showed that energy consumption and latency were
reduced by 27% and 28%, respectively [22]. Furthermore, an efficient framework based on
the Remora Optimization algorithm was created to jointly minimize latency and energy con-
sumption in an IoT healthcare system. The framework was considered efficient in improving
the energy consumption of IoT devices and reducing the response time delay of IoT sensors
[37].

To reduce IoT device energy consumption and delay, a novel message exchange proce-
dure with load balancing was also presented to offload IoT healthcare applications via a cloud-
fog architecture [38]. The research reduced energy usage and delay by 77% and 60%, respec-
tively, through the deployment of an energy-efficient fuzzy technique. Additionally, the use
of GA to offer a safe and economical way to utilize a Wireless Sensor Network (WSN) for
the detection of infectious diseases was implemented to mitigate the transmission rate from
one victim to another through early detection and treatment [35]. An optimization model
called the Mixed-Integer Non-Linear Programming (MINLP) model was implemented using
improved deep reinforcement learning (DRL) technique to determine the best course of ac-
tion for allocating resources, offloading computation, and reducing energy usage of cloud-
based IoT healthcare system and the result showed better resource management at the fog
computing layer that translated to minimal IoT device energy usage [39]. Furthermore, a hy-
brid energy-efficient model for patient home monitoring was proposed, which utilized sen-
sors to record and analyze electrocardiograms (ECGs). The results showed lower energy us-
age, latency, and network utilization, as observed [40].

A model for an efficient cloud-based IoT vehicle routing problem using a resource man-
agement algorithm called Reliable Resource Allocation Management (R2AM) was imple-
mented on the iFogSim2 simulator, featuring 15 fog devices and an installed Decentralized
Decision System (DDS) for resource management [41]. The IoT response time and energy
consumption obtained from the R2AM algorithm, as compared to the result of one of the
existing algorithms, called Scalable Microservices Placement (SMP), showed that R2AM has
10.3% lower latency and 21.85% lower energy usage than the SMP algorithm. However,
R2AM has limitations due to execution failure, which is caused by the limited number of fog
devices used [41]. In order to further optimize cloud based IoT energy and service latency
QoS, a four-tier architecture consisting of Internet of Medical Things (IoMT) layer, edge layer,

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 119

fog layer, and cloud layer was presented, this was harness by categorizing the IoT generated
workloads into high critical sensor data (such as heart failure rate, body temperature, glucose
level rating), medium critical sensor data (such as remote patient monitoring, emergency re-
sponse service, patient diagnostic, health status check), and low critical sensor data (Exam-
ple, healthcare records requiring complex data analytics for future decision making), these
data were offloaded into the setup using MILP resource management model to optimize ser-
vice level objective matric specifically energy consumption and service latency of IoT cloud
healthcare solution, the result obtained from the four-tier MILP model was compared against
that obtained from cloud only architecture (described as baseline architecture), and the result
showed that the energy consumption and service latency were optimized by 21% and 73%,
respectively [14]. Collectively, the trajectory from 2023 through early 2025 shows a clear evo-
lution from heuristic or basic offloading architectures toward hybrid, AI-driven scheduling
systems, reinforcement learning, and deep learning models co deployed across edge and
cloud. These frameworks not only minimize latency but also guarantee predictable QoS even
under high load, dynamic workloads, and in latency critical healthcare contexts.

3. Proposed Method

The research method is centered on the heterogeneous cloud-based IoT model in Figure
1, comprising the IoT layer, the Fog layer and the cloud layer. IoT response time, as well as
other Service Level Objectives (SLOs), is enhanced by placing numerous Fog or Edge layers
closer to users for caching data and providing fast access to cloud resources. IoT devices
exhibit lower latency when accessing data from the Fog layer through the fog gateway, which
is faster than accessing it directly from a higher-latency cloud layer that is remotely situated.
However, the hosts at the fog layer have lesser computational capabilities relative to the hosts
on the cloud layer. The functionalities performed at the fog layer comprise the scheduling
decision process, data caching, resource evaluation schemes, load balancing, and task offload-
ing, which enable necessary trade-offs between the fog and cloud layers to improve task effi-
ciency.

Figure 1. Proposed Cloud-Based IoT Healthcare Solution

Bluetooth/ZigBee/WiFi/RFID

Wireless Sensors

LSPR

Biosensor

DNA Biosensor
QCM

Biosensor

Micro-Cantilever

Biosensor

SAW

Biosensor

User

HBV/HCV

Fog Layer:

Dynamic

Programming/LSTM

Estimated QoS

Cloud Layer

DynamoDB/ECS/IoT

Core/Data Analytics

Doctor
Hospital/NHIS

Internet Access

Mobile

Phone

Family Ambulance

The IoT Layer

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 120

The IoT layer is where sensors and user devices are located in the cloud-based IoT
model. In this context, the sensors are streamlined to those responsible for non-invasive in-
terception and transmission of signals related to Hepatitis. Specifically, the sensors of interest
to this research, as described, are Localized Surface Plasmon Resonance (LSPR), DNA Bio-
sensor, Quartz Crystal Microbalance (QCM), Microcantilever Biosensor, and Surface Acous-
tic Wave (SAW) Biosensor. All these sensors will be simulated using JSON codes and will be
responsible for generating the workloads to be communicated to the fog layer through the
fog gateway device. The workloads will then be orchestrated into containers known as tasks
to be executed on the fog broker. Consequently, the fog broker handles task execution by
making the best scheduling decision based on the data forwarded by the sensors and allocating
tasks appropriately to hosts on the fog layer, taking into account resource metrics such as
CPU, RAM, Disk, and Network bandwidth.

The objective of this research is to implement a hybrid DP task scheduler on the fog
layer, which will optimize the response time and energy consumption achieved by the MILP
model. This is intended to be achieved by implementing an interface between the container
orchestration and resource metric monitoring service, utilizing an enhanced DP algorithm to
optimize the communication response time of IoT devices, as well as other SLO metrics. The

total number of hosts 𝑉𝑀 at the fog layer will be designated as 𝑉𝑀 =
{𝑣𝑚0, 𝑣𝑚1, . . . , 𝑣𝑚𝑛−1} and the time series optimization metrics for CPU, RAM, Disk, and

Bandwidth usage of host 𝑣𝑚 will be U(𝑣𝑚𝑖
𝑡). Furthermore, the set of total capacities of

CPU, RAM, Disk, and Bandwidth with the mean response latency of host 𝑣𝑚𝑖 will be des-

ignated as 𝐶(𝑣𝑚𝑖).

3.1. IoT Sensors Tasks Model

The workload for the model originates from the IoT layer, where the total time slice for

sensor task creation is divided into uniform scheduling intervals of duration ɗ as illustrated

in Figure 2. The 𝐾-th interval is represented as 𝑇𝑘 with start point of 𝑠(𝑇𝑘), such that

𝑠(𝑇0) = 0, and 𝑠(𝑇𝑘) = 𝑠(𝑇𝑘−1) + ɗ for every 𝐾 > 0. At time interval 𝑠(𝑇𝑘−1), a total

of 𝑁𝑘 new tasks are generated by IoT devices. These tasks, along with their SLOs—such as
Instruction Per Second (IPS), RAM, disk, and bandwidth requirements—are transmitted to

the fog layer for processing. The set of active tasks at time interval 𝑇𝑘 is given by 𝑊𝑘 =
{𝑤0

𝑘 , 𝑤1
𝑘, . . . , 𝑤|𝑊𝑘|

𝑘 }, where 𝑤𝑖
𝑘 denotes the i-th task within the list of tasks.

Figure 2. Proposed hybrid model

The fog layer schedules the newly generated tasks using DP, as formulated in Equation
(10) in Section 3.3, on the EC2 compute host. The resulting scheduling decision is represented

as 𝐷𝑘 = {(ℎ, 𝜏)}, where 𝐷𝑘 is a list of ordered pairs consisting of host identifiers and con-
tainer/task identifiers.

At the completion of each interval 𝑇𝑘 the set of tasks successfully executed is repre-

sented as 𝐶𝑘. The unfinished tasks are then moved to the next interval, forming 𝑊𝑘+1 =
𝑁𝑘 ∪ 𝑊𝑘 ∪ 𝑄𝑘, where 𝑁𝑘 is the set of newly generated tasks, 𝑊𝑘 is the set of active tasks,

and 𝑄𝑘 represents tasks waiting in the queue. In this way, the fog layer scheduling mechanism

𝑫

Hybrid Dynamic

Programming +LSTM

Dynamic

Programming
LSTM

𝑫𝑲−𝟏 𝑫

𝑶(𝑷𝒌)

Simualition Time 𝑻𝒌−𝟏 𝑻𝒌+𝟏 𝑻𝒌

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 121

determines whether tasks remain active, are completed, or require migration to another host.
The combination of DP for deterministic scheduling and LSTM for predictive QoS estima-
tion enables the hybrid approach. The conceptual workflow of this model is illustrated in
Figure 2.

3.2. Response Time, Energy Consumption, SLA Violation, Container Destroyed,
and Migration Time QoS Models

The primary focus of this research is the optimization of response time and energy con-
sumption, with other metrics serving as supporting indicators. The total response time of IoT
devices is the sum of the scheduling time and the task execution time for a given workload
[41]. The tasks are organized into containers on the fog broker, and the sensor-generated data
are used as input for allocation to hosts with higher resources. Task migration scheduling is
implemented within the cloud fog broker to ensure proper task allocation to suitable Virtual
Machines (VMs). This decision focuses on optimizing key IoT QoS parameters, specifically
response time and energy consumption. Let the objective function, based on the optimal

response time and energy consumption within the time interval 𝑇𝑘 (Figure 2), be:

𝛰(𝛲𝑘) = 𝛼. 𝐴𝐸𝐶𝑘 + 𝛽. 𝐴𝑅𝑇𝑘 (1)

Where 𝐴𝐸𝐶 = average energy consumption; 𝐴𝑅𝑇= average response time; 𝐴𝐸𝐶&𝐴𝑅𝑇 ∈
𝛲𝑘.

The average energy consumption is computed for any time interval for a device, normal-
ized by the device's maximum power, as shown in Equation (2).

𝐴𝐸𝐶𝑘 =
∑ ∫ 𝑃𝑜𝑤𝑒𝑟𝑣𝑚(𝑇)𝑑𝑇

𝑠(𝑇𝑘+1)

𝑠(𝑇𝑘)𝑣𝑚∈𝑉𝑀

|𝑊𝑘| ∑ 𝑃𝑜𝑤𝑒𝑟𝑣𝑚
𝑚𝑎𝑥∑

𝑣𝑚𝑘∈𝑉𝑀

 (2)

Where 𝑊𝑘= set of active tasks at time interval 𝑇𝑘; 𝑉𝑀𝑘 = total number of hosts at interval

𝑇𝑘; uniform time scheduling interval of duration.

The average response time is computed for interval 𝑇𝑘 for all completed tasks 𝐶𝑘 nor-
malized by the maximum response time before the present interval, as shown in Equation
(3).

𝐴𝑅𝑇𝑘 =
∑ 𝑅𝑒 𝑠 𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝜏𝑘)𝜏∈𝐶𝑘

|𝐶𝑘| 𝑚𝑎𝑥𝑠≤𝑘 𝑅𝑒 𝑠 𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒(𝑇𝑠
𝑗
)
 (3)

The number of containers destroyed refers to the total number of containers destroyed
within an interval, as given in Equation (4).

𝑛𝑢𝑚𝑑𝑒𝑠𝑟𝑜𝑦𝑒𝑑𝑡 = |𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡| (4)

When tasks are inefficiently allocated, they must be destroyed and re-initiated on another
host with adequate resources. This action affects response time and energy consumption,
often resulting in spikes. Service Level Agreement (SLA) violation refers to the number of
destroyed containers that exceed their SLA deadline within an interval, as shown in Equation
(5).

𝑠𝑙𝑎𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑡 = |{𝑐 ∈ 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡|𝑐. 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝐴𝑡 > 𝑆𝐿𝐴𝑡}| (5)

Where 𝑐. 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝐴𝑡 = number of containers destroyed at time interval 𝑡; 𝑆𝐿𝐴𝑡=accepta-

ble SLA deadline at time 𝑡.
The average migration time refers to the average migration time of destroyed containers

in an interval, as given in Equation (6).

𝑎𝑣𝑒𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑡 = {

1

|𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡|
∑ 𝑇𝑐

𝑚𝑖𝑔
, |𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡| > 0

𝑐∈𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡

0, otherwise

 (6)

Where 𝐶 = containers destroyed; 𝑇𝑐
𝑚𝑖𝑔

 = migration time per container

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 122

3.3. Task Scheduling Decision

In the fog layer (Figure 2), an array of VMs handles tasks of maximum bound 𝑤 with
critical resources such as memory, IPS, bandwidth, and disk. Efficient scheduling is therefore
required to achieve optimal QoS.

This is achieved using the dynamic programming algorithm (Section 3.2) with Equations

(8), (9), and (10). In this research, the scheduler is denoted as 𝑆, such that 𝑆: 𝑈𝑘 → 𝑈𝑘 ∗ 𝑉𝑀
holds when the allocation is possible based on the condition that the VM meets the resource
requirement by the scheduled task. The scheduling problem is mathematically formulated by

numbering the VMs from 𝑗 = 1, … , 𝑛, and represented by a binary vector:

 𝑥𝑗 = {
1, if 𝑗 − th 𝑉𝑀 is alocated
0, if 𝑗 − th 𝑉𝑀 is not allocated

 (7)

If the optimization (profit) of 𝑉𝑀𝑗 is 𝑝𝑗 , its capacity 𝑐𝑗 and the size of the task 𝑤, then

the scheduler selects binary vectors 𝑥𝑗 such that:

𝐷1 = ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑐

𝑛

𝑗=1

 (8)

While optimizing the QoS:

𝐷2 = ∑ 𝑝𝑗𝑥𝑗 ≤ 𝑐

𝑛

𝑗=1

 (9)

Where 𝐷2 is the value of the QoS parameter, such as response time or energy consumption
[42].

3.5. Dynamic Programming Procedure

Given scalar values 𝑚(1 ≤ 𝑚 ≤ 𝑛), and 𝐶(0 ≤ 𝐶 ≤ 𝑐), let 𝑓𝑚(𝐶) denote the opti-
mal solution value:

𝑓𝑚(𝐶) = 𝑚𝑎𝑥 {∑ 𝑝𝑗𝑥𝑗: ∑ 𝑤𝑗𝑥𝑗 ≤ 𝐶, 𝑥𝑗 ∈ {0,1}, 𝑗 = 1, 𝑚

𝑚

𝑗=1

𝑚

𝑗=1

} (10)

This implies:

𝑓1(𝐶) = {
0, for 𝐶 = 0, , 𝑤1 − 1
𝑝1, for 𝐶 = 𝑤1, , 𝑐

 (11)

The dynamic programming in Figure 2 is constructed by splitting problems into 𝑛-stages for

𝑚 ranging from 1 to 𝑛, and computing 𝑓𝑚(𝐶) for 𝐶 = 0; 𝑤 at each stage.

𝑓𝑚(𝐶) {
𝑓𝑚(𝐶), 𝐶 = 0, … , 𝑤𝑚 − 1

 𝑚𝑎𝑥(𝑓𝑚−1(𝐶), 𝑓𝑚−1(𝐶 − 𝑤𝑚) + 𝑝𝑚), 𝐶 = 𝑤𝑚, … , 𝑐
 (12)

The optimal state is computed as:

𝑣 = min (∑ 𝑤𝑗 , 𝑐

𝑚

𝑗=1

) (13)

Others parameters:

𝑏 = 2𝑚−1 (14)

𝑝𝐶 = 𝑓𝑚−1(𝐶), 𝐶 = 0, … , 𝑣 (15)

𝑥𝐶 = {𝑥𝑚−1, 𝑥𝑚−2, … , 𝑥1}, 𝐶 = 0, … , 𝑣 (16)

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 123

Furthermore:

𝐶 = ∑ 𝑤𝑗 , 𝑥𝑗 , 𝑓𝑚−1

𝑚

𝑗=1

(𝐶) = ∑ 𝑝𝑗 , 𝑥𝑗

𝑚−1

𝑗−1

 (17)

The dynamic programming algorithm is summarized in Algorithm 1.

Algorithm 1. Dynamic Programming
procedure DYNAMIC_PROGRAMMING

INPUT: 𝑛, 𝑐, 𝑝𝑗 , 𝑤𝑗 // 𝑗 = 1. . 𝑛

OUTPUT: 𝑧, 𝑥𝑗 // optimal solution and binary assignment vector
1: begin

2: // initialization for capacity 0. . 𝑤1 − 1

3: for 𝐶 ∶= 0 to 𝑤1 − 1 do

4: 𝑝𝐶 ∶= 0
5: 𝑥𝐶 ∶= 0
6: end for
7: // base case for capacity w1

8: 𝑣 ∶= 𝑤1
9: 𝑏 ∶= 2
10: 𝑝𝑣 ∶= 𝑝1
11: 𝑥𝑣 ∶= 1
12: // iterate over items/VMs 2. . 𝑛

13: for 𝑚 ∶= 2 to 𝑛 do

14: call ITERATION1(𝑣, 𝑏, 𝑝𝐶 , 𝑥𝐶 , 𝑤𝑚, 𝑝𝑚; 𝑣, 𝑏, 𝑝𝐶 , 𝑥𝐶)
15: end for

16: 𝑧 ∶= 𝑝𝑐 // objective value at capacity C = c

17: determine 𝑥𝑗 by decoding 𝑥𝑐
18: end

procedure ITERATION1

INPUT: 𝑣, 𝑏, 𝑝𝐶 , 𝑥𝐶 , 𝑤𝑚, 𝑝𝑚

OUTPUT: 𝑣, 𝑏, 𝑝𝐶 , 𝑥𝐶
19: begin
20: // expand active capacity range up to min(𝑣 + 𝑤𝑚, 𝑐)

21: if 𝑣 < 𝑐 then

22: 𝑢 ∶= 𝑣
23: 𝑣 ∶= min(𝑣 + 𝑤𝑚, 𝑐)
24: for 𝐶 ∶= 𝑢 + 1 to 𝑣 do

25: 𝑝𝐶 ∶= 𝑝𝑢
26: 𝑥𝐶 ∶= 𝑥𝑢
27: end for
28: end if
29: // knapsack relaxation (backward) to include item m

30: for 𝐶 ∶= 𝑣 downto 𝑤_𝑚 do

31: if 𝑝𝐶 < 𝑝{𝐶 − 𝑤𝑚} + 𝑝𝑚 then

32: 𝑝𝐶 ∶= 𝑝{𝐶 − 𝑤𝑚} + 𝑝𝑚

33: 𝑥𝐶 ∶= 𝑥{𝐶 − 𝑤𝑚} + 𝑏

34: end if
35: end for

36: 𝑏 ∶= 2 ∗ 𝑏
37: end

The dynamic programming algorithm is iteratively executed over the tasks and hosts

(Algorithm 1, line 15) to generate the decision sets 𝐷𝑘 = {𝑣, 𝑝𝑐} These decision sets are

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 124

then provided as input to the LSTM model (Figure 2) to predict the QoS value 𝑂(𝑃𝑘) de-
fined in Equation (26). The goal is to minimize the target objective function, which corre-
sponds to either response time or energy consumption, as illustrated in Equation (27). This
study is the first to integrate dynamic programming with LSTM to optimize IoT response
time and energy consumption. Furthermore, it is also the first to simulate hepatitis sensors
using JSON, thereby demonstrating how real-life hepatitis sensors can be created to support
remote patient monitoring.

3.6. Long Short-Term Memory (LSTM) Model

The key concept of LSTM is the use of memory cells and gates that decide which infor-

mation should be stored at any time [43]. Let 𝑥𝑡, ℎ𝑡, and 𝑦𝑡 denote the input feature vector,
hidden state, and output vector, respectively. Given an input sequence (𝑥1, 𝑥2, … , 𝑥𝑇), the

corresponding hidden states and outputs are computed by iterating (18) and (19) for 𝑡 =
1, … , 𝑇:

ℎ𝑡 = 𝑓ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (18)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (19)

Where 𝑊𝑥ℎ is the input weight matrix; 𝑊ℎℎ the recurrent weight matrix, and 𝑊ℎ𝑦 the out-

put weight matrix; 𝑏ℎ and 𝑏𝑦 are bias terms; and 𝑓ℎ(∙) is an activation function. The LSTM
implements the gate activations as:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖), (20)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓), (21)

𝑐̃𝑡 = tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) , (22)

𝑐𝑡 = 𝑖𝑡⨀𝑐̃𝑡 + 𝑓𝑡⨀𝑐𝑡−1, (23)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜), (24)

ℎ𝑡 = 𝑜𝑡 ⨀ tanh (𝑐𝑡) (25)

Where ⨀ denotes element-wise multiplication; 𝑊𝑥\∗ , 𝑊ℎ\∗ are weight matrices; 𝑏\∗ are

bias vectors; and 𝑖𝑡, 𝑓𝑡, 𝑐̃𝑡, 𝑐𝑡, 𝑜𝑡, ℎ𝑡 are the input gate, forget gate, candidate cell, memory
cell, output gate, and hidden state, respectively. With ℎ𝑡 from (25), the output is obtained. In

a single LSTM layer, a total of 4(𝑁𝑀 + 𝑁2 + 𝑁) parameters are learned (for input size 𝑀

and hidden size 𝑁)
In this research, a finite number of task and host decision pairs from (10) (with a maxi-

mum limit 𝑀) are fed into the LSTM as 𝐷𝑘. At any interval 𝑇𝑘, the active tasks |𝑊𝑘| ≤ 𝑀.
The utilization matrix of IPS, RAM, bandwidth, and disk for the active tasks forms a potential

vector of size 𝑍. Hence, the decision pairs produced by Dynamic Programming are encoded

as the task-utilization matrix 𝛷(𝑊𝑘−1) of size 𝑀 × 𝑍. Another vector encodes the virtual-
machine utilization matrix (IPS, RAM, bandwidth, disk, capacities, and per-VM latency) of

size 𝑍′ per VM. For |𝑉𝑀| virtual machines, this yields a matrix 𝑍′ × |𝑉𝑀| , denoted

𝛷(𝑊𝑘−1). Together with the decision matrix 𝛷(𝐷), the LSTM input at interval 𝑇𝑘 is the

set of new tasks 𝑁𝑘 , waiting tasks 𝑄𝑘, active tasks 𝑊𝑘, completed tasks 𝐶𝑘, and 𝛷(𝐷), The
model is fed with 𝑥 = 𝛷(𝑊𝑘−1), 𝛷(𝑉𝑀𝑘−1), 𝛷(𝐷) to estimate the QoS value Ο(𝑃𝑘) (la-
tency or energy) as defined in (26) and illustrated in Figure 2.

The scenario is modeled as a continuous function 𝑓(𝑥; 𝜃) where the LSTM approxi-

mates Ο(𝑃𝑘) with 𝜃 as the learnable parameter vector and 𝑥 the discrete/continuous input

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 125

within a defined domain. Specifically, 𝑥 comprises the utilization matrices of tasks and VMs

together with the decision matrix. The parameter 𝜃 is learned using the dataset in (26):

𝑥 = {𝐿𝑆𝑇𝑀[𝛷(𝑊𝑘−1), 𝛷(𝑉𝑀𝑘−1), 𝛷(𝐷)], 𝛰(𝑃𝑘)}𝑘 (26)

This dataset is generated by a simulated scheduler whose tasks are formulated using real

traces from the Bitbrains dataset [44]. After training, 𝜃 enables the model to approximate a
generic function over a large parameter set. The optimization problem is then to find the

decision matrix 𝛷(𝐷) that minimizes 𝑓(𝑥; 𝜃) as in (27):

𝛷(𝐷)minimize → 𝑓(𝑥: 𝜃), ∀𝐷 satisfying (10) & (16) (27)

3.7. Mean Squared Error (MSE) Loss Function

The LSTM used in this study is pre-trained; therefore, its predictive accuracy is evaluated
based on the loss values generated during execution. The loss quantifies the discrepancy be-
tween predicted and ground-truth outputs. During prediction of the optimal value 𝛰(𝑃𝑘)
(either response time or energy consumption) when the LSTM processes the dataset in (26),
the loss is tracked using the MSE:

𝐿𝑜𝑠𝑠(𝑓(𝑥: 𝜃), 𝑦) =
1

𝑇
∑(𝑦 − 𝑓(𝑥: 𝜃))

2
𝑇

𝑡=0

 (28)

Where 𝑇 is the time interval, 𝜃 the LSTM parameter, and (𝑥, 𝑦) are samples drawn from
the dataset defined in (26).

3.8. Software and Hardware Used

All experiments were performed on the Python-based COSCO platform. COSCO pro-
vides a secure, agile, and scalable environment for building cloud-based IoT solutions in both
simulated and real deployments. It also supports designing/programming sensors using
Node.js via a JSON API. In this study, the sensors were configured to communicate with the
cloud backend—specifically InfluxDB and Oracle-VM VirtualBox—to emulate realistic
cloud–fog operations.

4. Results and Discussion

In cloud-based IoT environments, efficient resource management is essential for main-
taining optimal performance. This study evaluates seven optimization algorithms, with a par-
ticular emphasis on response time and energy consumption, while also considering support-
ing indicators such as migration time, number of destroyed containers, and SLA violations.
For benchmarking, well-known methods including GA, MILP, POND, GOBI, DRL, and
GOBI2 are compared against the proposed Hybrid DP+LSTM. Table 1 summarizes these
comparative results across all key performance indicators.

Table 1. Comparison of Algorithms Performance Metrics Evaluation for IoT Cloud.

Ref Algorithm

Avg.
Response

Time (ms)

% Improve-
ment Over
DP/LSTM

Avg.
Migration
Time (ms)

Num.
Destroyed

SLA
Violations

Energy per

Container

(joules)

Ours Hybrid
DP+LSTM

82.91 100.0% 0.018 3 0 2,835,048

[9] GOBI2 395.13 79.0% 0.083 2 0 3,664,337

[9] GOBI 776.09 89.3% 0.849 3 0 4,463,010

[39] DRL 512.41 83.8% 0.315 1 0 2,973,238

[32] POND 2789.09 97.0% 2.653 6 2 3,310,966

[14] MILP 35,720.49 99.8% 105.43 351 307 3,005,498

[35] GA 145,465.53 99.9% 638.63 449 223 3,959,935

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 126

The discussion highlights how the hybrid approach not only reduces latency and energy
use but also achieves more consistent performance across varying workloads. This compre-
hensive evaluation demonstrates that the integration of analytical and learning-based methods
provides a balanced trade-off between efficiency and reliability in IoT healthcare systems.

4.1. Energy Interval Dissipated by Algorithms

 Figure 3 represents the total energy interval dissipated by the respective algorithms.
Most algorithms have similar energy consumption, except for Hybrid DP + LSTM, which is
significantly lower, making it more energy-efficient.

Figure 3. Total Energy Interval

In Figure 3, GA, GOBI, and GOBI2 show the highest energy consumption, indicating
lower energy efficiency, which can negatively affect scalability and sustainability in fog envi-
ronments. POND and MILP show noticeable energy reductions compared to the previous
three. Hybrid DP + LSTM exhibits the lowest energy consumption, indicating the highest
QoS efficiency in terms of energy, and making it highly suitable for energy-constrained fog
nodes. DRL exhibits a slight increase in energy usage compared to Hybrid DP + LSTM, yet
it remains more efficient than earlier algorithms, indicating a reasonable balance between en-
ergy use and other QoS metrics, such as adaptability and learning capability.

4.2. Average Response-Time Generated by Algorithms

Figure 4 depicts the average response time. Apparently, GA has the highest response
time, indicating delays, while Hybrid DP + LSTM achieves the lowest response time, suggest-
ing better efficiency. Table 2 presents the ratings of the algorithms' performance in a fog
environment, with respect to their respective response times.

Figure 4. Average Response Time

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 127

Table 2. Algorithm comparison based on response time.

Algorithm
Avg. Response

Time (ms)
QoS

Evaluation
Observation

Hybrid DP +
LSTM

82.91
Excellent

(Real-time)
Best latency; ideal for time-sensitive applications

GOBI2 395.13 Very Good Optimized version of GOBI; low latency

GOBI 776.09 Good Decent latency, may lack adaptability

DRL 512.41 Very Good Adaptive, intelligent decision-making

POND 2,789.09 Moderate Slower, possibly due to static scheduling

MILP 35,720.49 Poor Computationally heavy; not scalable

GA 145,465.53 Very Poor Extremely high latency; unsuitable for real-time use

4.3. Ablation of Hybrid DP +LSTM

Furthermore, an ablation of the Hybrid DP + LSTM was performed to obtain the results
of the performances of DP-only and LSTM-only to validate if the performance of the Hybrid
DP+LSTM to form a hybrid model is better than the performances of the individual algo-
rithms, as shown in Table 3

Table 3. Ablation study results.

Components
Avg. Response

Time (ms)

% Improve-
ment Over
DP/LSTM

Avg.
Migration
Time (ms)

Num.
Destroyed

Energy per

Container

(joules)

Hybrid DP+LSTM 82.91 100% 0.0176 3 2,835,048.21

DP Only 156.57 47.05% 0.1943 1 2,640,936.98

LSTM Only 282.41 70.64% 0.0730 1 3,671,515.11

The results in Table 3 show that the hybrid DP+LSTM model achieves a 47.05%

(156.57ms) improvement over DP and a 70.64% (282.41ms) improvement over LSTM in
average response time, as it combines the deterministic optimization strength of Dynamic
Programming with the predictive capabilities of LSTM. DP-only excels at finding near-opti-
mal scheduling decisions through recursive cost minimization; however, it can be computa-
tionally intensive for large and dynamic fog workloads. LSTM, on the other hand, can learn
temporal workload patterns and predict future task arrivals; however, it suffers from higher
latency due to its less precise optimization. The hybridization enables DP to benefit from
LSTM’s foresight, allowing for faster and more adaptive placement decisions, which signifi-
cantly lowers response time.

On the energy efficiency side, Hybrid DP+LSTM shows a 22.80% (3,671.51 joules) im-
provement over LSTM, but a 7.34% (2,640.93) underperformance compared to DP. This
outcome reflects a trade-off: DP, by design, minimizes resource wastage through exact opti-
mization, which explains its slightly lower energy consumption. LSTM introduces prediction-
driven migrations that may increase overhead. When combined with DP, some of this pre-
dictive overhead remains, resulting in slightly higher energy usage compared to DP-only.
However, the hybrid still avoids the excessive migrations and energy drain observed in LSTM-
only scheduling, keeping energy efficiency within an acceptable range.

4.4. Hybrid DP+LSTM Model Accuracy

 The LSTM is a pre-trained model that was combined with the DP. Hence, its
knowledge was transferred to augment the task scheduling capacity of the DP, thereby im-
proving the QoS of the IoT Cloud System. The accuracy of the model was estimated based
on the Loss values generated and returned by the MSE function. The loss function value
reflects the difference between the actual values and the predicted values by the LSTM. There-
fore, higher loss spikes suggest poor prediction, and stable loss suggests accurate predictions.
In Figure 5, the pre-trained state of the model is the key reason why loss started off low,
dropped slightly in the first epoch, and then remained stable for the remaining epochs.

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 128

Figure 5. DP/LSTM Loss over Epoch

4.5. Analysis of Findings

From the analysis, Hybrid DP+LSTM demonstrated superior performance across key
metrics, particularly in response time and migration time, which are critical for IoT Cloud
environments. It achieved improvements of up to 99.94% and 99.8% over traditional meth-
ods, such as GA and MILP, respectively. Additionally, Hybrid DP+LSTM had no SLA vio-
lations and maintained a balanced energy consumption profile, making it a viable solution for
large-scale IoT deployments. This makes it highly suitable for latency-sensitive applications
such as telemedicine, real-time traffic management, and remote industrial monitoring.

• Adoption of Hybrid DP+LSTM in IoT Cloud: Given its superior performance, it is
recommended for IoT Cloud infrastructures requiring low-latency response times, par-
ticularly in areas such as telemedicine, smart grid monitoring, and intelligent transporta-
tion systems.

• Further Optimization of GOBI2 and DRL: These algorithms performed relatively well
but can be further optimized to improve response times for IoT services in critical ap-
plications, such as drone-based surveillance and automated robotic systems.

• Energy Optimization Strategies for IoT Devices: While Hybrid DP+LSTM was energy-
efficient, further improvements in energy management are needed to enhance sustaina-
bility in IoT Cloud environments, especially in large-scale industrial IoT (IIoT) applica-
tions.

• Application-Specific Algorithm Selection: For IoT scenarios with minimal SLA con-
cerns, POND and GOBI2 can be considered as alternatives for workload balancing in
environments such as smart homes and connected agriculture.

• DP-only is best suited for pure energy minimization, but it is slower in response time.

• LSTM-only adapts to workload trends but suffers from high latency and energy ineffi-
ciency.
These findings offer valuable insights into workload distribution algorithms, facilitating

the selection of the most suitable method for optimizing IoT Cloud performance and ensur-
ing reliable service delivery in latency-sensitive applications.

5. Conclusions

The Hybrid DP+LSTM algorithm emerged as the most efficient and balanced solution.
It delivered the lowest response time (82.91ms), zero SLA violations, the least energy con-
sumption per container, and zero migration time. These results are especially significant for
real-time, energy-sensitive IoT applications such as smart healthcare, autonomous vehicles,
smart cities, emergency response systems, precision agriculture monitoring and industrial au-
tomation. The model’s integration of predictive LSTM capabilities with DP’s decision opti-
mization allows it to anticipate workload demands and allocate resources proactively, ensuring
service continuity and minimizing latency. DRL also demonstrated robust performance, par-
ticularly in terms of adaptability and low wait/migration times, making it a suitable option in
dynamic environments. Although it consumed slightly more energy than Hybrid DP+LSTM,
its learning-based decision-making provided reliable QoS in volatile fog settings. Algorithms
like GOBI2 and POND offered moderate trade-offs and demonstrated improvements over

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 129

their predecessors, particularly in terms of energy and migration efficiency. In contrast, tradi-
tional optimization methods, such as GA and MILP, have demonstrated significant limita-
tions. GA exhibited the highest container destruction, migration time, and response delay,
indicating inefficiency and instability. MILP, although theoretically optimal, was too compu-
tationally intensive for time-sensitive deployments, resulting in the most SLA violations and
increased wait times. These characteristics make both GA and MILP unsuitable for modern
fog environments without extensive tuning or hybridization. In general, intelligent, learning-
based algorithms, especially hybrid DP+LSTM and DRL are better suited for the distributed,
real-time demands of fog computing. Their ability to adapt, predict, and make fast decisions
ensures optimal QoS and sustainable resource use. The research proves that DP-only is best
for pure energy minimization, but it is slower in response time. In contrast, LSTM adapts to
workload trends but suffers from high latency and energy inefficiency. Hybrid DP+LSTM
strikes a balance between the two, offering the lowest response time with moderate energy
trade-offs, making it more suitable for fog environments where latency is critical. The future
of fog and edge computing lies in such hybrid and AI-driven models that combine prediction,
planning, and responsiveness to handle complex IoT workloads effectively.

Author Contributions: Conceptualization: NIS. and AEE.; Methodology: NIS and MEI.;
Software: NIS.; Validation: MEI., AEE. and NIS.; Formal analysis: MEI and NIS.; Investiga-
tion: AEE.; Resources: NIS.; Data curation: NIS; Writing—original draft preparation: NIS.;
Writing—review and editing: AEE and MEI.; Visualization: NIS.; Supervision: AEE.; Project
administration: MEI. All authors have read and agreed to the published version of the man-
uscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this research are accessible from
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains.

Conflicts of Interest: The authors declare no conflict of interest in reporting the outcome
of this research.

References

[1] W. A. Cruz Castañeda and P. Bertemes Filho, “Improvement of an Edge-IoT Architecture Driven by Artificial Intelligence for
Smart-Health Chronic Disease Management,” Sensors, vol. 24, no. 24, p. 7965, Dec. 2024, doi: 10.3390/s24247965.

[2] I. Batool, “RealTime Health Monitoring Using 5G Networks: A Deep Learning-Based Architecture for Remote Patient Care,”
arXiv, Jan. 2025, [Online]. Available: http://arxiv.org/abs/2501.01027

[3] R.-H. Hwang, Y.-C. Lai, and Y.-D. Lin, “Offloading Optimization with Delay Constraint in the 3-tier Federated Cloud, Edge, and
Fog Systems,” in 2021 IEEE Global Communications Conference (GLOBECOM), Dec. 2021, pp. 1–6. doi:
10.1109/GLOBECOM46510.2021.9685111.

[4] N. Gholipour, M. D. de Assuncao, P. Agarwal, J. Gascon-Samson, and R. Buyya, “TPTO: A Transformer-PPO based Task Of-
floading Solution for Edge Computing Environments,” in 2023 IEEE 29th International Conference on Parallel and Distributed Systems
(ICPADS), Dec. 2023, pp. 1115–1122. doi: 10.1109/ICPADS60453.2023.00164.

[5] U. K. Lilhore et al., “Cloud-edge hybrid deep learning framework for scalable IoT resource optimization,” J. Cloud Comput., vol. 14,
no. 1, p. 5, Feb. 2025, doi: 10.1186/s13677-025-00729-w.

[6] A. Cotorobai, J. M. Silva, and J. L. Oliveira, “A Federated Random Forest Solution for Secure Distributed Machine Learning,” in
2025 IEEE 38th International Symposium on Computer-Based Medical Systems (CBMS), Jun. 2025, pp. 769–774. doi:
10.1109/CBMS65348.2025.00159.

[7] A. Hennebelle, Q. Dieng, L. Ismail, and R. Buyya, “SmartEdge: Smart Healthcare End-to-End Integrated Edge and Cloud Com-
puting System for Diabetes Prediction Enabled by Ensemble Machine Learning,” in 2024 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Dec. 2024, pp. 127–134. doi: 10.1109/CloudCom62794.2024.00031.

[8] T. E. Ali, F. I. Ali, P. Dakić, and A. D. Zoltan, “Trends, prospects, challenges, and security in the healthcare internet of things,”
Computing, vol. 107, no. 1, p. 28, Jan. 2025, doi: 10.1007/s00607-024-01352-4.

[9] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, and N. R. Jennings, “COSCO: Container Orchestration Using Co-Simulation and
Gradient Based Optimization for Fog Computing Environments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 101–116,
Jan. 2022, doi: 10.1109/TPDS.2021.3087349.

[10] Y. Gu et al., “Deep Reinforcement Learning for Job Scheduling and Resource Management in Cloud Computing: An Algorithm-
Level Review,” arXiv. Jan. 02, 2025. [Online]. Available: http://arxiv.org/abs/2501.01007

[11] J. V Guttag, Introduction to Computation and Programming Using Python: With Application to Computational Modeling and Understanding Data ,
3rd ed. The MIT Press, 2021.

http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 130

[12] A. S, A. Geetha, R. K, S. S, and S. D, “Latency Reduction in Medical IoT Using Fuzzy Systems by Enabling Optimized Fog
Computing,” Int. J. Electr. Electron. Eng., vol. 9, no. 12, pp. 156–166, Dec. 2022, doi: 10.14445/23488379/IJEEE-V9I12P114.

[13] M. Kumar et al., “Healthcare Internet of Things (H-IoT): Current Trends, Future Prospects, Applications, Challenges, and Security
Issues,” Electronics, vol. 12, no. 9, p. 2050, Apr. 2023, doi: 10.3390/electronics12092050.

[14] H. A. Alharbi, B. A. Yosuf, M. Aldossary, and J. Almutairi, “Energy and Latency Optimization in Edge-Fog-Cloud Computing for
the Internet of Medical Things,” Comput. Syst. Sci. Eng., vol. 47, no. 1, pp. 1299–1319, 2023, doi: 10.32604/csse.2023.039367.

[15] N. Mishra and S. Pandya, “Internet of things applications, security challenges, attacks, intrusion detection, and future visions: A
systematic review,” IEEE Access, vol. 9, pp. 59353–59377, Jul. 2021, doi: 10.1109/ACCESS.2021.3073408.

[16] M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, “Internet of things: Device capabilities, architectures, protocols, and
smart applications in healthcare domain,” IEEE Internet Things J., vol. 10, no. 4, pp. 3611–3641, Jan. 2022, doi:
10.1109/JIOT.2022.3228795.

[17] B. Pradhan, S. Bhattacharyya, and K. Pal, “IoT-Based Applications in Healthcare Devices,” J. Healthc. Eng., vol. 2021, pp. 1–18,
Mar. 2021, doi: 10.1155/2021/6632599.

[18] K. Bagneid, Y. Sherif, M. Soliman, and M. Hussein, “Design, Simulation, and Implementation of Connected IoT Wearable Devices
in Healthcare Applications,” Proc. Pakistan Acad. Sci. A. Phys. Comput. Sci., vol. 58, no. 3, pp. 59–65, Feb. 2022, doi:
10.53560/PPASA(58-3)745.

[19] M. Aldossary, “Multi-Layer Fog-Cloud Architecture for Optimizing the Placement of IoT Applications in Smart Cities,” Comput.
Mater. Contin., vol. 75, no. 1, pp. 633–649, 2023, doi: 10.32604/cmc.2023.035414.

[20] Y. Wang, S. Wang, B. Yang, B. Gao, and S. Wang, “An effective adaptive adjustment method for service composition exception
handling in cloud manufacturing,” J. Intell. Manuf., vol. 33, no. 3, pp. 735–751, Mar. 2022, doi: 10.1007/s10845-020-01652-4.

[21] E. Yaacoub, K. Abualsaud, T. Khattab, and A. Chehab, “Secure Transmission of IoT mHealth Patient Monitoring Data from
Remote Areas Using DTN,” IEEE Netw., vol. 34, no. 5, pp. 226–231, Sep. 2020, doi: 10.1109/MNET.011.1900627.

[22] A. Mukherjee, S. Ghosh, A. Behere, S. K. Ghosh, and R. Buyya, “Internet of Health Things (IoHT) for personalized health care
using integrated edge-fog-cloud network,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 1, pp. 943–959, Jan. 2021, doi:
10.1007/s12652-020-02113-9.

[23] A. Cook et al., “Internet of Cloud: Security and Privacy Issues,” in Cloud Computing for Optimization: Foundations, Applications, and
Challenges, 2018, pp. 271–301. doi: 10.1007/978-3-319-73676-1_11.

[24] J. L. Shah, H. F. Bhat, and A. I. Khan, “Integration of Cloud and IoT for smart e-healthcare,” in Healthcare Paradigms in the Internet
of Things Ecosystem, Elsevier, 2021, pp. 101–136. doi: 10.1016/B978-0-12-819664-9.00006-5.

[25] H. Y. Y. Nyein et al., “A wearable patch for continuous analysis of thermoregulatory sweat at rest,” Nat. Commun., vol. 12, no. 1, p.
1823, Mar. 2021, doi: 10.1038/s41467-021-22109-z.

[26] S. Rahman, M. Irfan, M. Raza, K. Moyeezullah Ghori, S. Yaqoob, and M. Awais, “Performance Analysis of Boosting Classifiers in
Recognizing Activities of Daily Living,” Int. J. Environ. Res. Public Health, vol. 17, no. 3, p. 1082, Feb. 2020, doi:
10.3390/ijerph17031082.

[27] A. Zollanvari, Machine Learning with Python: Theory and Implementation. Cham: Springer International Publishing, 2023. doi:
10.1007/978-3-031-33342-2.

[28] N. Singh, M. Raza, V. V. Paranthaman, M. Awais, M. Khalid, and E. Javed, “Internet of Things and cloud computing,” in Digital
Health, Elsevier, 2021, pp. 151–162. doi: 10.1016/B978-0-12-818914-6.00013-2.

[29] D. Bălăcian and S. Stancu, “A Performance-Driven Economic Analysis of a LSTM Neural Network Used for Predicting Building
Energy Consumption,” Proc. Int. Conf. Bus. Excell., vol. 17, no. 1, pp. 29–37, Jul. 2023, doi: 10.2478/picbe-2023-0005.

[30] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments
Using A3C Learning and Residual Recurrent Neural Networks,” IEEE Trans. Mob. Comput., vol. 21, no. 3, pp. 940–954, Mar. 2022,
doi: 10.1109/TMC.2020.3017079.

[31] S. S. Gill et al., “Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends
and open challenges,” Internet of Things, vol. 8, p. 100118, Dec. 2019, doi: 10.1016/j.iot.2019.100118.

[32] X. Liu, B. Li, P. Shi, and L. Ying, “POND: Pessimistic-Optimistic oNline Dispatching,” arXiv. May 11, 2021. [Online]. Available:
http://arxiv.org/abs/2010.09995

[33] G. K. Shrivastava, P. Kaushik, and R. K. Pateriya, “Comprehensive Analysis of Web Page Classifier for Fsocused Crawler,” Int. J.
Innov. Technol. Explor. Eng., vol. 8, no. 9, pp. 57–65, Jul. 2019, doi: 10.35940/ijitee.I7477.078919.

[34] S. Bosmans, S. Mercelis, J. Denil, and P. Hellinckx, “Testing IoT systems using a hybrid simulation based testing approach,” Com-
puting, vol. 101, no. 7, pp. 857–872, Jul. 2019, doi: 10.1007/s00607-018-0650-5.

[35] S. Singh, A. S. Nandan, G. Sikka, A. Malik, and A. Vidyarthi, “A secure energy-efficient routing protocol for disease data transmis-
sion using IoMT,” Comput. Electr. Eng., vol. 101, p. 108113, Jul. 2022, doi: 10.1016/j.compeleceng.2022.108113.

[36] I. Ullah, N. U. Amin, M. A. Khan, H. Khattak, and S. Kumari, “An Efficient and Provable Secure Certificate-Based Combined
Signature, Encryption and Signcryption Scheme for Internet of Things (IoT) in Mobile Health (M-Health) System,” J. Med. Syst.,
vol. 45, no. 1, p. 4, Jan. 2021, doi: 10.1007/s10916-020-01658-8.

[37] C. Mangla, S. Rani, and N. Herencsar, “An energy-efficient and secure framework for IoMT: An application of smart cities,” Sustain.
Energy Technol. Assessments, vol. 53, p. 102335, Oct. 2022, doi: 10.1016/j.seta.2022.102335.

[38] N. Singh and A. K. Das, “Energy-efficient fuzzy data offloading for IoMT,” Comput. Networks, vol. 213, p. 109127, Aug. 2022, doi:
10.1016/j.comnet.2022.109127.

[39] H. Zhou, Z. Zhang, Y. Wu, M. Dong, and V. C. M. Leung, “Energy Efficient Joint Computation Offloading and Service Caching
for Mobile Edge Computing: A Deep Reinforcement Learning Approach,” IEEE Trans. Green Commun. Netw., vol. 7, no. 2, pp.
950–961, Jun. 2023, doi: 10.1109/TGCN.2022.3186403.

Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Sitlong, et al. 131

[40] K. Alatoun, K. Matrouk, M. A. Mohammed, J. Nedoma, R. Martinek, and P. Zmij, “A Novel Low-Latency and Energy-Efficient
Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud System,” Sensors, vol. 22, no. 14, p. 5327, Jul.
2022, doi: 10.3390/s22145327.

[41] H. U. Atiq, Z. Ahmad, S. K. uz Zaman, M. A. Khan, A. A. Shaikh, and A. Al-Rasheed, “Reliable Resource Allocation and Manage-
ment for IoT Transportation Using Fog Computing,” Electronics, vol. 12, no. 6, p. 1452, Mar. 2023, doi: 10.3390/electron-
ics12061452.

[42] S. Aiswarya, K. Ramesh, and S. Sasikumar S, “IoT based Big data Analytics in Healthcare: A Survey,” in Proceedings of the Fist Interna-
tional Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India,
2021. doi: 10.4108/eai.16-5-2020.2304020.

[43] B. Sirisha, K. K. C. Goud, and B. T. . S. Rohit, “A Deep Stacked Bidirectional LSTM (SBiLSTM) Model for Petroleum Production
Forecasting,” Procedia Comput. Sci., vol. 218, pp. 2767–2775, 2023, doi: 10.1016/j.procs.2023.01.248.

[44] D. Kshatriya and V. A. Lepakshi, “An Efficient Hybrid Scheduling Framework for Optimal Workload Execution in Federated
Clouds to Maintain Performance SLAs,” J. Grid Comput., vol. 21, no. 3, p. 47, Sep. 2023, doi: 10.1007/s10723-023-09682-x.

