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Abstract: The daily exchange of informatics over the Internet has both eased the widespread prolifer-

ation of resources to ease accessibility, availability and interoperability of accompanying devices. In 

addition, the recent widespread proliferation of smartphones alongside other computing devices has 

continued to advance features such as miniaturization, portability, data access ease, mobility, and other 

merits. It has also birthed adversarial attacks targeted at network infrastructures and aimed at exploiting 

interconnected cum shared resources. These exploits seek to compromise an unsuspecting user device 

cum unit. Increased susceptibility and success rate of these attacks have been traced to user's person-

ality traits and behaviours, which renders them repeatedly vulnerable to such exploits especially those 

rippled across spoofed websites as malicious contents. Our study posits a stacked, transfer learning 

approach that seeks to classify malicious contents as explored by adversaries over a spoofed, phishing 

websites. Our stacked approach explores 3-base classifiers namely Cultural Genetic Algorithm, Ran-

dom Forest, and Korhonen Modular Neural Network – whose output is utilized as input for XGBoost 

meta-learner. A major challenge with learning scheme(s) is the flexibility with the selection of appro-

priate features for estimation, and the imbalanced nature of the explored dataset for which the target 

class often lags behind. Our study resolved dataset imbalance challenge using the SMOTE-Tomek 

mode; while, the selected predictors was resolved using the relief rank feature selection. Results shows 

that our hybrid yields F1 0.995, Accuracy 0.997, Recall 0.998, Precision 1.000, AUC-ROC 0.997, and 

Specificity 1.000 – to accurately classify all 2,764 cases of its held-out test dataset. Results affirm that 

it outperformed benchmark ensembles. Result shows the proposed model explored UCI Phishing 

Website dataset, and effectively classified phishing (cues and lures) contents on websites. 

Keywords: Ensemble learning; Feature selection; Imbalanced dataset; Machine learning; Phishing   

detection; SMOTE-Tomek; Stacked ensemble; XGBoost. 
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1. Introduction 

The digital revolution has ushered in a plethora of tools and processes that aim to facil-
itate efficient knowledge exchange among users [1], [2]. The devices ease data processing 
while offering the benefits of flexibility in the shared resource cum enhanced user-connectiv-
ity [3]. With security a major issue, such advances have continued to ignite the interest of 
adversaries [4]. The proliferation of smartphones with their processing capacities has further 
eased it as invasive targets, with protocols made more possible with emergent tools [5], [6]. 
An adversary uses the penetrative tools like malware (spam) to bolster socially-engineered 
threats that explore subterfuge mode to coordinate their attack at unsuspecting devices in 
their bid to compromise network infrastructure and resources [7], [8]. The attack ensures data 
exchange is targeted to exploit a user’s social need [9], desires and insatiable trait [10]. Today’s 
businesses are reshaped via fusion of informatics [11] – as a channel to deliver high-end values 
to consumers, who receive services as rendered. This exchange has today become a trillion-
dollar war [12], as businesses must seek new frontiers to curb phishing attacks amongst other 
issues [13], as failure to safeguard these exchanges ushers in the need for cross-cutting re-
search [14].  

The success of many of these adversarial attacks hinges on user personality traits, which 
include online presence, emotional seclusion, insatiable desires, and trust issues [15]. An ad-
versary masks their intent as a trusted ally to exploit a compromised resource, providing the 
attacker with pivot access for further exploits on the infrastructure [16]. The consequent rise 
in the adoption of smartphones has further eased these attacks and compromises considera-
bly. Phishing simply redirects a user’s request to a spoofed website, rippled with malicious 
content that seeks to expose a targeted user [17] or device without their knowledge [18]. 
Phishing consists of three elements: (a) a lure masks an attacker as a genuine user, targeting a 
user’s empathy, fear and curiosity [19], (b) a hook is an embedded link in a message [20], and 
(c) a catch obtains an exposed device’s private data. Its success is hinged on its frequency and 
diversity [21] with unrealistic demands that seek to intimidate a user’s psyche with petty gifts 
[22], [23]. Vulnerability to scam can be due to demographics (i.e. age, gender, status, etc) [24], 
[25]. As illustrated in Figure 1–3, phishing susceptibility varies significantly across gender, 
social status, and age range. For instance, girls between 24–42 years were the most phished 
due to media presence or social seclusion [26]; there was also the factor of educational status 
cum societal approval [27]; and users between 18- 29 years were also phished more due to 
behavioural traits [28], [29]. 

 

Figure 1. Phishing susceptibility by gender 

 

Figure 2. Phishing susceptibility by Status 
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Figure 3. Phishing susceptibility by Age 

Victimization impacts website’s contents and its structure with greater probability an 
unsuspecting user will fall prey [30]. To identify malicious contents, we must eliminate gaps 
as follows [31], [32]: (a) identify lures that increases believability in a user [33], and (b) assess 
the undetectability and potency of cues to unsuspecting users [34], [35]. Learning models are 
successfully used to identify attacks, and detect cues and lures that leave users as susceptible. 
They identify data anomalies via learned outliers in a dataset [36], [37] as accomplished via 
vote, bagging, boosting, and stacked models/schemes [38], [39].  

MLs are veritable tools to identify attacks. A trained MLs can detect anomalous patterns 
– even with its dynamic predictors. Learning schemes are grouped into: machine learning 
(ML) [40], deep learning (DL) [41], and ensemble learning (EL) [42]. ML's flexibility and ro-
bustness help it to learn intrinsic patterns and decode predictors that fastens model design, 
and ease outliers’ identification. Its pitfalls are imbalanced dataset and the feature selection 
mode used. DLs utilize recurrent neural networks to capture chaotic, high-dimensional data 
patterns [43]. Its poor generalization due to the vanishing gradient problem, restricts its use. 
But, its variant overcomes this via its gates to control its input [44], and eases its adaptability 
to learned changes as long-term dependency [45], [46]. Its inability to handle larger dataset 
and longer training time required implies the quest for better alternative [47]. Lastly, ELs fuses 
ML with DL into a stronger learner to enhance performance [35]. It must resolve conflicts of 
structure and data-encode; while, leveraging the merits of both ML and DL to avoid model 
overfit as birthed by the underlying models [48], [49]. Thus, we explore the XGBoost to 
achieve such predictive abilities, leveraging its base, weak learners to enhance itself [48], [50]. 
It will improve its performance via error reduction on its weak (base) learner, and reduce its 
overall variance and bias in the dataset to improve generalization. It benefits from the com-
prehensive knowledge of its weaker base learners, to improve its generalization by exploiting 
the XGBoost scheme. With degraded performance due to an imbalanced data [51], [52], we 
explore the variant SMOTE-Tomek balancing. Our study wishes to: (a) identify phishing lures 
content on spoofed website, (b) resolve data imbalance via SMOTE-Tomek, and (c) select 
predictors concerning the target class via the relief rank feature selection mode. 

Resolving data imbalance via oversampling has become imperative in ML, as it accounts 
for the minor class as crucial [53]. It is opposed to under-samplers that often reduces or ignore 
as meaningless, the minor class in a dataset. Thus, we use the synthetic minority oversample 
technique (SMOTE) [54], or its variants SMOTE-Tomek and SMOTEEN [55]. Our study is 
structured as follows: Section 1 introduces the subject and highlights the research gaps that 
motivate this work. Section 2 presents the proposed methodology, covering data collection, 
preprocessing, dataset balancing through SMOTE-Tomek, feature selection, and the con-
struction of the stacked ensemble with XGBoost training and validation. Section 3 discusses 
the experimental results and provides a broader contextual analysis of the proposed model’s 
performance on the UCI phishing website dataset. Section 4 presents the results and discus-
sion in detail, while Section 5 concludes the study with key findings and implications. 

2. Related Literatures 

Various studies have been espoused on phishing website detection recently. For exam-
ple, Li et al. [56] integrated feature selection approach with tree-based learning ensemble that 
aimed at improved accuracy. The study compared a variety of models and showed that their 
proposed AdaBoost achieved an accuracy of up to 93.2% to outperform benchmark models 
with accuracy between 70-to-91.5%. Ojugo and Eboka [13] explored a variety of model to 
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assess and compare the performance of both predictor selection by omitting redundant fea-
tures (FSOR), and by filtering method (FSFM). FSOR yields 22-features while FSFM yields 
11-features, respectively. They evaluated phishing detection performance using RF, MLP, and 
SVM. The results showed that Random Forest (RF)optimized with FSOR achieved highest 
performance with accuracies of 95% for RF, 94.7% for MLP, and 91% for SVM with efficient 
processing times. Pujara and Chaudhari [57] utilized several ML schemes to detect phishing 
websites including SVM, Logistic Regression (LR), RF, and Neural Networks (NNN). They 
sought to improve model accuracy via comprehensive feature selection. Their model achieved 
significant improvements with an accuracy of 96.7%. Setiadi et al. [58] explored BiGRU on 
feature selection by omitting redundant (FSOR) method to detect phishing websites. Their 
approach advanced a deep learning model to analyze websites features, improving phishing 
detection accuracy and robustness. They reported accuracy, F1 and AUC of 1.00. Ejeh et al. 
[59] proposed three meta-learner models based on the cost-penalty attribute (CostPA), which 
assigns weight to features used to build efficient decision trees, resulting in high accuracy and 
low false alarm rates. This approach achieved accuracies ranging from 95-to-97.6%.  

A cursory look at the reviewed works shows the utilization of Phishing Websites dataset 
from the UCI Machine Learning Repository. It implies there is a consistent baseline for com-
paring various approaches in phishing website detection. While previous studies have demon-
strated the effectiveness of various ML-and-DL approaches, including feature selection flex-
ibility and imbalanced dataset resolution, these have necessitated the need to explore more 
advanced architectures such as transfer learning using stacked approach with meta-learners 
to improve phishing detection. Our research proposes using 3-base classifiers (i.e. Cultural 
Genetic Algorithm, RF and Korhonen Modular Neural Network) with the XGBoost meta-
learner as combined with the relief ranking feature selection techniques with SMOTE-Tomek 
data balancing scheme. This approach aims to leverage temporal dependencies in the data 
more effectively, potentially offering superior performance in detecting phishing websites 
compared to existing methods. 

3. Material and Method 

The proposed transfer learning approach is shown in Figure 4. 

 

Figure 4. Proposed stacking ensemble with boosted learner 

3.1. Data Collection 
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Figure 5. Original Dataset plot 

3.2. Pre-processing  

Cleans up the dataset by expunging redundancies to yield integrity, and removes missing 
values to yield quality. Optimized data is then encoded using the one-hot mode that trans-
forms categorical data into its equivalent binary forms [61], [62]. Figure 6 shows the optimized 
dataset. 

 

Figure 6. Optimized Dataset plot 
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the same class as the nearest hit, and the nearest sample from a varying class as the nearest 
miss, and (c) uses feature value of nearest neighbour to update its weight(s) [64]. It assesses 
the correlation of all predictors for ground-truth as in Equation (1) [65]. With a threshold of 
8.321 as computed, algorithm 1 ranked features to choose a total of 20 predictors as in Table 
1, from the original UCI dataset with the initial 30 features. 

𝑌 =  100 ∗ ∑|(𝑥1
2 − 𝑥2

2)2 + (1 − 𝑥1
2)2| (1) 

Algorithm 1. Relief Ranking Feature Selection Approach 
INPUT: N, A, V // N is training instance, A is vectorAttribute, V is classValues 
OUTPUT: W // W is vectorWeights 
1: load dataset with training samples, predictors, weights and initialize predictor weights 
2: for all weights → randomly select target predictor R && compute nearest hit = H && 

nearest miss = M 
3:     find W[A] = W[A] – diff(A,R,H)/m + diff(A,R,M)/m 
4: return computed predictorScore for W 
5: end 
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Table 1. Phishing dataset with relief ranking feature selection for predictors 

Parameters Description Data Type Selected 

shortening_service 
Whether a URL shortening service like bit.ly is used 

(1=Yes, -1=No) 
char Yes 

double_slash_redirect  Presence of "//" in the URL path (1: Yes, -1: No)  char Yes 

having_IP_Address 
Whether URL has IP Address instead of a domain 

name (1=Yes, 1=No) 
alphanu-

meric 
No 

having_At_Symbol  Presence of "@" symbol in the URL (1: Yes, -1: No)  char No 

having_Sub_Domain  Number of subdomains in the URL (1: More than one, 
0: One, -1: None)  

char Yes 

URL_lenght Length of the URL (1=long, 0=medium, -1=short) integer Yes 

domain_reg_length  Length of time domain has been registered (1: over a 
year, -1: Less than a year)  

integer Yes 

Prefix_Suffix  Presence of "-" in the domain part of the URL (1: Yes, 
-1: No)  

char No 

SSLfinal_State  Whether the website uses HTTPS with a valid SSL cer-
tificate (1: Yes, -1: No)  

char Yes 

Favicon  Whether the favicon is loaded from the same domain 
(1: Yes, -1: No)  

char Yes 

port  Use of non-standard ports (1: Yes, -1: No)  alphanu-
meric 

No 

HTTPS_token  Presence of "HTTPS" token in the URL (1: Yes, -1: 
No)  

char Yes 

Request_URL  Percentage of external links in the source code of the 
website (1: High, -1: Low)  

alphanu-
meric 

No 

URL_of_Anchor  Percentage of external anchor links on the website (1: 
High, -1: Low)  

char Yes 

Links_in_tags  Percentage of external links in tags (e.g., meta, script) 
(1: High, -1: Low)  

char Yes 

SFH  Form Handler, where form data is submitted (1: Exter-
nal, 0: Internal, -1: Same)  

alphanu-
meric 

Yes 

Submitting_to_email  Whether the form submits data to an email address (1: 
Yes, -1: No)  

alphanu-
meric 

Yes 

Abnormal_URL  Whether the URL is abnormal (1: Yes, -1: No)  alphanu-
meric 

No 

Redirect  Number of redirects (1: More than one, -1: Less than 
one)  

alphanu-
meric 

No 

on_mouseover  Whether changing status bar content on mouseover (1: 
Yes, -1: No)  

char No 

RightClick  Whether right-click is turned off on the website (1: 
Yes, -1: No)  

char Yes 

popUpWindow  Whether pop-up windows are present (1: Yes, -1: No)  char Yes 

Iframe  Whether iframe is used on the website (1: Yes, -1: No)  char No 

age_of_domain  Age of the domain (1: More than 6 months, -1: Less 
than 6 months)  

integer No 

DNSRecord  Whether the DNS record exists (1: Yes, -1: No)  boolean Yes 

web_traffic  Web traffic rank (1: High, 0: Medium, -1: Low)  alphanu-
meric 

Yes 

Page_Rank  Google PageRank (1: High, -1: Low)  integer Yes 

Google_Index  Whether Google indexes the site (1: Yes, -1: No)  integer Yes 

Links_point_to_page  Number of links pointing to the page (1: High, 0: Me-
dium, -1: Low)  

alphanu-
meric 

Yes 

Statistical_report  Whether the website is reported as a phishing site (1: 
Yes, -1: No)  

integer Yes 
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3.4. Data Split/Balance 

First, dataset is split into train (75% or 8,291-label), and test (25%, or 2,764-label). Bal-
ancing resample data, interpolating its nearest neighbour to create synthetic data to repopulate 
a pool, or removing data from train dataset to create a balanced dataset. Using SMOTE-
Tomek [66], we fused the SMOTE oversampler with Tomek-links undersampler as in algo-
rithm 2 [32] with Figure 7 as plot using the SMOTE-Tomek scheme.  

 

Algorithm 2. SMOTE-Tomek's Links data balancing approach 
INPUT: X, y, samplingStrategy=auto, k_neighbours  
OUTPUT: X_resampled, y_resampled 
1: load dataset with trainTestSplit → partition trainset (75%) and testSet (25%) via strat-

ifyShuffleSplit 
2: for trainset, use 5-fold split with randomState = 42 
3:     choose random point from minorClass 
4:     for each selectedData → compute: relativeDistance && kNearestNeighbour 
5:     choose randomValue [0,1] && compute randomValue * relativeDistance 
6:     update minorClassNew && repeat till setThreshold is reached for minorClass-

New 
7:     select randomMinorClass: compute kNearestNeighbor(randomized_data) 
8:     with selected minorClassNew → evaluate newPool with TomekLink function 
9: end TomekLink 

 

Figure 7. SMOTE-Tomek data balancing 

After applying SMOTE-Tomek, the dataset yielded 5984 legitimate and 5979 phishing 
instances (Figure 7). Although not perfectly balanced, this slight difference results from the 
Tomek-link undersampling step, which removes borderline instances to improve class sepa-
rability and reduce noise. 

The choice of data splitting depends largely on the tradeoff between the need for a more 
robust model favoring the 75%:25% train-and-test ratio mode, or it can be poised towards 
the need for improved performance as guided by model complexity, larger dataset size and 
other feats so as to favor the 80%:20% mode. Here, our choice of the 75%:25% ratio leans 
on the small nature of the explored dataset with 11,055 records so that we can ultimately have 
a more robust evaluation on diverse unseen held-out (test) dataset, address the concerns of 
flexibility in feature selection, and proffer a more adaptive assessment with more accurate and 
less bias generalization of the model. In addition – with the train-subset still unbalanced, we 
performed data normalization using the z-score normalization as in Equation (2). 

3.5. Stacked-Ensemble 

In this step, we fuse 3-base learners with the XGB meta-learner, explained as: 

3.5.1. Cultural Genetic Algorithm (CGA) 

CGA uses belief spaces to guide the evolutionary search: (a) normative values to which 
predictors are bound, (b) domain knowledge that equips predictors with task-specific infor-
mation, (c) temporal components that ensure predictors retain knowledge of past solutions, 
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and (d) spatial components that provide topological structure for solution exploration [66], 
The influence function sets the upper and lower bounds between (0,1), while Equations (3) 
and (4) allow knowledge transfer between the belief space and the population pool, modifying 

predictors to conform with the evolving knowledge base. Each chromosome gene 𝑏𝑖 ∈ {1,0} 
encodes a rule or feature representation, where the binary gene values denote the presence or 
absence of particular attributes [67]. During evolution, individuals are evaluated using a fitness 
function that measures their ability to discriminate between phishing and legitimate websites. 
The fittest individuals represent decision rules, and the majority voting of the evolved popu-
lation determines the final class output of CGA. Table 2 is the CGA design. 

𝑓(𝑥) = 𝐿𝑙𝑜𝑤𝑒𝑟 +  𝑥′
𝐿𝑢𝑝𝑝𝑒𝑟

2𝑁 − 1
 (3) 

𝑥′ = ∑ 𝑏𝑖2𝑖

𝑁

𝑖=0

 (4) 

Table 2. CGA design configuration. 

Features Value Description 

populationSize 120 The maximum number of individuals or candidate solutions in each 
generation 

nosGenerations 30 Number of solutions in a generation 

crossoverProbability 0.7 The likelihood of 2-parent individuals to create an offspring 

selectionMode int 1-rank, 2-elitism, 3-steadyState, 4-tourney, 5-stochasticUniversal-
Sampling 

req_fit_function 10 Minimal number of samples needed 

offspring_created int Offspring: 1-crossover, 2-mutation 

crossoverType int 1-onePoint, 2-twoPoints, 3-uniform 

mutationProbability 0.005 Controls the chance of random alteration in a candidate solution 

 

3.5.2. Random Forest (RF) 

RF successively grows its decision trees independently via a bootstrap sample, in bagging 
mode. It uses a binary split on its extra layer to extend the randomness on how its trees are 
constructed, so that its best nodes are selected randomly to capture intricate feats in the da-
taset. Its inability to handle diversity in categorical data results in its poor performance. Thus, 
we tune the hyperparameters to reduce model overfitting [68]. Expressed in Equation (5), 

with 𝑛𝑜𝑟𝑚𝑓𝑖 as normalized feature importance for 𝑖 in tree 𝑗 in Equation (6). T is the total 

number of trees, and 𝑓𝑖𝑗  is the importance of a feature 𝑖 about ground-truth, and 𝑛𝑖𝑗  is 
nodal feature importance as in Equation (7) that yields Gini value. Table 3 shows the Random 
Forest design configuration. 

𝑛𝑜𝑟𝑚𝑓𝑖𝑖 =
𝑓𝑖𝑖

∑ 𝑓𝑖𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 (5) 

𝑓𝑖𝑖 =
∑ 𝑛𝑖𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖

∑ 𝑛𝑖𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
 (6) 

𝑛𝑖𝑗 = 𝑤𝑗𝑐𝑗 − 𝑤𝑙𝑒𝑓𝑡(𝑗)𝑐𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝑐𝑟𝑖𝑔ℎ𝑡(𝑗) (7) 

3.5.3. Korhonen Modular Neural Network (KMNN)  

KMNN yields a deep, modular learning model that computes its output using the tan-
sigmoid function. It divides a network into smaller units for enhanced dependability and im-
proved efficacy of its components [69]. This improves its computational efficiency, reduces 
time to convergence, and enables it to handle more tasks effectively in parallel. Its diversity 
grants each unit independent training, making KMNN more robust and flexible, with im-
proved generalization. Table 4 details the KMNN design. 
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Table 3. Random Forest design configuration. 

Features Value Description 

nEstimators 250 Number of trees constructed 

maxFeatures log Helps to control overfit when splitting a node 

maxDepth 5 Max depth of each tree 

minSampleSplit 10 Minimal samples needed to control tree size and complexity 

random_state 25 The seeds for reproduction 

eval_metric error, logloss Performance evaluation metrics 

eval_set x,val, y_val Train data for evaluation 

bootstrap True sets bootstrap aggregation used 

Table 4. KMNN design configuration. 

Features Value Description 

eval_perf_set MSE Evaluation metrics at training 

hidden_layers 10 Number of hidden layers adopted 

training_percent 75 k-fold dataset used for training and cross-validation 

transfer_hidden tan-sigmoid Transfer (activation) learning function 

learning_rate 0.25 Step size learning to update the ensemble 

number_layer 10 Minimal number of samples needed 

data_division stratified k-fold dataset for construction 

train_net_algo LMBP Training mode by a neural network 

backpro_momentum auto Backpropagation-in-momentum learn 

 

3.5.4. XGBoost  

XGBoost meta-learner leans on the predictive output of its base models, expanding its 

objective function via a regularization term Ω(𝑓𝑡) and loss function  𝑙(𝑌𝑖
𝑡 , 𝑌̂𝑖

𝑡) [70]. The ob-
jective is expressed in Equation (8), ensuring improved accuracy and generalization through 
hyperparameter tuning as shown in Table 5 [71]. 

𝑜𝑏𝑗(𝑡) = ∑ 𝑙 (𝑦𝑖, 𝑦̂𝑖
(𝑡−1) + 𝑓𝑡

(𝑥𝑖) + Ω(𝑓𝑡
))

𝑖

 (8) 

3.6. Train and Cross Validation  

This step is initialized with default configuration as in Tables (2)-(5) to tune hyperpa-
rameters. Each tree is iteratively constructed and trained to ensure the collective knowledge 
to identify intricate data. Training blends synthetic with original data to guarantee its compre-
hensive learning with improved adaptability to various configurations [72]. 

4. Results and Discussion 

4.1. Ensemble Performance 

For a comprehensive evaluation devoid of overfit, we use a 5-fold training partition on 
the 75% train-subset obtained via SMOTE-Tomek, and a final evaluation carried out via a 
held-out test (25%) subset as in Table 6. Proposed hybrid yields average accuracy 0.997, Recall 
0.998, Precision 1.000, F1 0.995, Specificity 1.000 and AUC 0.997. Table 6 results in high 
value for MCC, and implies model accurately and consistently handles the minority class with 
data balancing performed; while the Specificity of 1.000 reached indicates that the model 
effectively recognizes phishing, malicious websites, and that no benign records were also mis-
classified. The held-out test (25%) assesses the model’s generalization ability with unseen data. 
The results showed AUC value of 0.997, which implies that the model was able to differenti-
ate between the benign and malignant records. 
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Table 5. XGBoost meta-learner design configuration. 

Features Value Description 

nEstimators 200 Number of trees constructed 

learningRate 0.25 Step size learning to update XGBoost 

maxDepth 5 Max depth of each tree 

subSample uniform (0.1) Percent of rows used for each tree construction to prevent overfit 

evalSet x_val, y_val Train dataset to evaluate performance 

minSampleSplit 10 Minimal samples needed to control tree size and complexity 

treeMethod auto Tree construction algorithm used in XGBoost 

randomState 25 The seeds for reproduction 

Table 6. XGBoost Meta-Learner Design Configuration. 

Metrics Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 
Held-Out 

Test 

Accuracy 0.991 0.981 0.997 0.998 1.000 0.997 

Recall 0.981 1.000 0.975 0.976 1.000 0.998 

Precision 1.000 0.984 1.000 0.996 1.000 1.000 

F1 0.991 0.989 0.995 0.985 1.000 0.995 

MCC 0.982 0.963 0.955 0.985 1.000 0.986 

Specificity 1.000 1.000 0.985 0.998 1.000 1.000 

AUC-ROC 0.999 0.999 0.986 0.996 1.000 0.997 

 
Figure 8 is the AUC-ROC with a 0.997, and shows the model’s capability to differentiate 

the negative and positive classes. The proposed model accurately identified all 2,764 of the 
test data. With only a misclassified case and no false positives recorded, its specificity of 1.000 
implies that no phishing content was misclassified. This is critical to avoid misclassification 
when detecting phishing. Proposed model enhances phishing website detection performance 
on both the training data and the held-out test set. 

 

Figure 8. ROC result of the held-out test dataset 

Figure 9 implies the ensemble correctly classified all test datasets with perfect accuracy. 
The utilization of both feature selection, SMOTE-Tomek balancing, and data normalization 
did not degrade performance [73]. Rather, it focuses on critical feats for model construction 
to successfully detect spoofed websites with reduced errors that will secure user(s) resources 
and enhance experience [74], [75]. 



Journal of Computing Theories and Applications 2025 (November), vol. 3, no. 2, Ugbotu, et al. 155 
 

 

 

Figure 9. Confusion matrix 

4.2. Ablation Studies with Benchmark Comparison 

To assess the performance of our proposed ensemble, we focus on held-out test which 
offers a more realistic indication of the model’s generalization capabilities. Summarized using 
the metric, Table 7 shows the ablation studies with performance of the base learners applied. 
Our hybrid ensemble yielded best result with F1 0.699, accuracy 0.697, precision and recall 
values of 0.685 and 0.684 respectively. Conversely, our benchmarks yield the F1 range [0.619, 
0.639], accuracy range [0.609, 0.637], precision range [0.611, 0.64] and recall range [0.614, 
0.64] respectively. 

Table 7. Ablation results per components. 

Models/ Components Accuracy Precision Recall F1 

Kohonen Modular NN 0.609 0.611 0.614 0.619 

Cultural Genetic Algorithm 0.619 0.632 0.634 0.611 

Random Forest 0.627 0.642 0.653 0.631 

XGBoost 0.637 0.640 0.640 0.639 

Proposed 0.697 0.685 0.684 0.699 

 
With the relief ranking feature selection strategy as applied. Table 8 shows performance 

of our hybrid versus the benchmark models. Results shows that our hybrid ensemble out-
performed the benchmark with F1 0.857, accuracy 0.832, Precision and Recall values of 0.846 
and 0.847. Conversely, our benchmarks yield the F1 range [0.793, 0.839], accuracy range 
[0.713, 0.826], precision range [0.704, 0.830] and recall range [0.771, 0.847] respectively. 

Table 8. Performance with and without relief ranking feature selection. 

Components 
Without Relief Ranking With Relief Ranking 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 

KMNN 0.609 0.611 0.614 0.619 0.713 0.704 0.771 0.793 

CGA 0.619 0.632 0.634 0.611 0.769 0.798 0.799 0.801 

RF 0.627 0.642 0.653 0.631 0.819 0.842 0.822 0.842 

XGBoost 0.637 0.640 0.640 0.639 0.826 0.830 0.845 0.839 

Proposed 0.697 0.685 0.684 0.699 0.832 0.846 0.847 0.857 

 
Table 9 shows our hybrid ensemble outperformed the benchmark with F1 0.995, accu-

racy 0.997, precision 1.000 and Recall 0.998 respectively. Conversely, our benchmarks show 
the various ranges for the various metric of performance as applied for the different bench-
marks with F1 range [0.881, 0.955], accuracy range [0.899, 0.958], precision range [0.881, 
0.951] and recall range [0.853, 0.952] respectively. 

Table 9. Performance with and without SMOTE-Tomek data balancing. 

Components 
Without SMOTE-Tomek With SMOTE-Tomek 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 

KMNN 0.713 0.704 0.771 0.793 0.899 0.881 0.853 0.881 

CGA 0.769 0.798 0.799 0.801 0.921 0.911 0.911 0.928 

RF 0.819 0.842 0.822 0.842 0.928 0.944 0.944 0.938 

XGBoost 0.826 0.830 0.845 0.839 0.958 0.951 0.952 0.955 

Proposed 0.832 0.846 0.847 0.857 0.997 1.000 0.998 0.995 

962 0 

1,801 1 
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Table 10 shows that the proposed model underperforms against [58] due to its use of 
BiGRU with hybrid feature selection; However, other benchmark model underperformed in 
comparison to our proposed model, across metrics on the test dataset – achieving its high 
accuracy 0.997, precision 1.000, recall 0.998, specificity 1.000 and AUC-ROC 0.997 – showing 
best generalization with low false-positives, which is crucial in phishing detection especially 
with complex lures used by adversaries [76], [77] in their evolving exploit methods. 

Table 10. Comparison with related works. 

Metrics 
SEM + DBN 

[17] 
DHH + 

GRU [78] 
BiGRU + 
FSOR [58] 

LSTM 
+CNN [47] 

GBM + PSO 
[79] 

Ours 

Accuracy 0.973 0.919 1.000 0.992 0.969 0.997 

Recall 0.974 0.959 1.000 0.989 0.976 0.998 

Precision 0.982 0.948 1.000 0.992 0.947 1.000 

F1 0.976 0.973 1.000 0.985 0.974 0.995 

Specificity - 0.926 - 0.991 - 1.000 

AUC-ROC 0.938 - 1.000 0.987 0.958 0.997 

 
Models leverage deep learning capabilities – their performance can be seen to be slightly 

lower in metrics, and the lack thereof of specificity indicates that they are less robust; whereas, 
our model can be seen to maintain high sensitivity performance, even with its transfer learning 
architectures [80]. We used the SMOTE-Tomek scheme to address class imbalances. 

5. Conclusions 

The study affirms that our proposed stacked learning approach yields a strong learner 
potential with improved performance generalization by proffering a total of 60-rules using its 
CGA block with 18-of-such-rules found to yield a classification accuracy of 0.997. It implies 
that the rules as generated by proposed ensemble has 0.997 (i.e. 99.7%) rate to adequately 
identify phishing websites. Furthermore, the upper and lower bounds of the CGA ensure an 
elitist system for ground-truth is averted via the use of other base learners in the stacked 
ensemble. This increases its early detection rate at its training and validation so that model 
witnesses an increase in accuracy with decreased loss. Results suggest a robust and well-regu-
larized model, whose success can be attributed to the effective combination of the balanced 
dataset, optimized weights, and a suitable learning. With top rules selected, ensemble yields 
accuracy 0.997, recall 0.998, precision 1.000, F1 0.995, specificity 1.000 and AUC 0.997 re-
spectively. In addition, the proposed ensemble achieved high discriminative capability via sta-
tistically fused heuristics mode to successfully mitigate class-imbalance with enhanced evalu-
ation scores for F1, accuracy, recall, specificity and AUC respectively. Study advances a light-
weight yet effective framework that avoids complex training and validation that results in 
overfit or over-parameterization, effectively handles larger data complexities; while offering 
interpretability and high performance. 
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