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Abstract: Pneumonia remains a leading cause of morbidity and mortality worldwide, particularly in 

resource-limited settings and among elderly populations, where timely diagnosis and continuous mon-

itoring are often constrained by limited clinical infrastructure. This study presents an edge–cloud–in-

tegrated framework for early pneumonia risk monitoring, leveraging multimodal wearable sensors and 

deep learning to support continuous short-duration monitoring. The proposed system is designed to 

operate in near real time under simulated deployment conditions, continuously acquiring and analyzing 

physiological signals (respiratory rate, heart rate, SpO₂, and body temperature) alongside event-driven 

acoustic biomarkers (cough sounds) within a distributed architecture. A lightweight edge module per-

forms local signal preprocessing and anomaly triage, selectively transmitting salient information to a 

cloud-based multimodal deep learning model for refined risk estimation and interpretability analysis. 

The framework was evaluated using a multi-source dataset comprising public repositories (MIMIC-III 

and Coswara) and a clinically supervised wearable study conducted in two Nigerian hospitals, resulting 

in 718  hours of quality-controlled multimodal monitoring data. In a pooled multi-source evaluation, 

the system achieved an AUC of 0.95, while in a clinically realistic local-only evaluation, the AUC was 

0.86, reflecting a consistent but preliminary diagnostic signal. These results highlight the importance of 

local data adaptation for real-world applicability and suggest that multimodal AI can provide meaning-

ful early risk indicators under resource constraints. Beyond predictive performance, this work demon-

strates the feasibility of integrating multimodal learning, edge–cloud computation, and explainable an-

alytics into a deployment-aware, privacy-preserving monitoring framework for low-resource healthcare 

environments. 

Keywords: Deep Learning; Edge–Cloud Computing; Explainable AI; Multimodal Learning;      

Pneumonia Detection; Remote Health Monitoring; Wearable Sensors; Wireless Health Systems. 

 

1. Introduction 

Pneumonia remains one of the leading causes of mortality worldwide, particularly in 
low- and middle-income countries where early diagnosis and continuous clinical monitoring 
are constrained by limited healthcare infrastructure [1]–[3]. Conventional diagnosis relies 
heavily on chest radiography and laboratory testing, which are resource-intensive, time-con-
suming, and unsuitable for remote or continuous monitoring scenarios [4], [5]. Recent ad-
vances in wearable sensing technologies and artificial intelligence have opened new opportu-
nities for continuous, non-invasive respiratory health monitoring, particularly outside hospital 
settings [6]–[8]. 

However, most existing AI-based pneumonia detection systems remain unimodal, rely-
ing on either physiological signals or acoustic features alone. Such approaches are inherently 
fragile, as real-world sensor data are often incomplete, noisy, or context-dependent, leading 
to poor generalization across populations and environments. To address these limitations, 
multimodal learning—which integrates heterogeneous data streams such as physiological 
time series, cough acoustics, and demographic information—has emerged as a promising 
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paradigm for more robust clinical inference [9]. By leveraging complementary modalities, 
multimodal fusion enables models to capture latent interactions that are inaccessible to single-
modality systems, resulting in more stable and clinically meaningful predictions [10]–[13].  

Despite its promise, multimodal health analytics faces three persistent challenges: (i) 
Data heterogeneity, where devices operate at different sampling rates and produce incompat-
ible feature spaces; (ii) Computational constraints, as multimodal deep learning models are 
often too heavy for deployment on wearable or edge devices; and (iii) Domain shift and in-
terpretability, where models trained on public datasets fail to generalize to local populations, 
and their decision processes remain opaque to clinicians [14]–[16]. 

Edge–cloud computing offers a principled solution to these challenges by partitioning 
intelligence across layers. The edge enables low-latency preprocessing and privacy-aware tri-
age close to the user, while the cloud supports computationally intensive multimodal fusion, 
domain adaptation, and interpretability analysis [17]–[19]. This hierarchical design balances 
responsiveness, scalability, and clinical transparency, making it particularly suitable for re-
source-constrained healthcare environments. 

Motivated by this paradigm, a multimodal learning strategy is adopted in which modality-
specific feature representations are learned independently and subsequently integrated 
through a domain-adaptive fusion mechanism. Acoustic, physiological, and static data are 
processed using dedicated encoders to preserve the structural characteristics of each modality, 
while feature alignment across heterogeneous sources is enforced through adversarial domain 
adaptation. This design enables the model to learn representations that are both discriminative 
for pneumonia detection and robust to domain shifts arising from differences in acquisition 
settings, devices, and populations [20], [21]. To further support clinical transparency, explain-
able AI techniques based on SHAP are incorporated to provide post-hoc interpretability of 
the model’s predictions, enabling examination of the contributions of each modality and fea-
ture group. 

Within this framework, the edge–cloud architecture is treated not merely as a deploy-
ment option but as an integral component of the learning and inference process. Computa-
tionally lightweight operations are assigned to the edge layer to support timely preprocessing 
and triage, while resource-intensive fusion, adaptation, and interpretability analyses are per-
formed in the cloud. Based on this design, a domain-adaptive multimodal deep learning 
framework for pneumonia detection using wearable sensors is presented, bridging local data 
acquisition with design-oriented scalable cloud-based intelligence while maintaining interpret-
ability and deployment feasibility. 

2. Related Works 

2.1. Single-Modality Pneumonia Detection 

Early studies on pneumonia detection predominantly relied on single data modalities, 
focusing on either acoustic or physiological signals. Audio-based approaches, such as those 
introduced in [2], [4], [22], [23], utilized cough and breath-sound features processed by con-
volutional neural networks (CNNs). While these methods achieved promising accuracy under 
controlled conditions, their performance was often sensitive to ambient noise, microphone 
variability, and demographic bias, which limited their generalizability in real-world settings. 

Similarly, physiological-signal-based methods trained on large clinical datasets, such as 
MIMIC, demonstrated strong predictive performance for respiratory conditions; however, 
their applicability to wearable and real-time monitoring remained limited. Models trained on 
such data frequently exhibited poor cross-device consistency and reduced robustness when 
transferred to non-clinical environments [24]. As a result, unimodal frameworks remain vul-
nerable to signal degradation, missing data, and contextual variability, underscoring the need 
for multimodal approaches that integrate complementary physiological and acoustic infor-
mation for more resilient diagnostics. 

2.2. Multimodal Health Diagnostics 

To address the limitations of unimodal systems, recent research has increasingly ex-
plored multimodal learning strategies that combine respiratory, cardiovascular, and acoustic 
data streams. Multimodal CNN–LSTM architectures have been reported to improve respira-
tory disease classification performance by 6–10% compared to unimodal baselines [25]–[28]. 
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These improvements highlight the ability of multimodal models to capture complementary 
and correlated patterns across heterogeneous signals. 

Despite these advances, most existing multimodal frameworks are implemented exclu-
sively in cloud-based environments, requiring high bandwidth and continuous connectivity. 
This dependency limits their suitability for continuous monitoring in resource-constrained or 
remote settings. Furthermore, interpretability remains underexplored in multimodal 
healthcare analytics, with only a limited number of studies incorporating explainable AI tech-
niques such as SHAP to clarify how individual modalities and features contribute to diagnos-
tic outcomes. This gap limits clinical trust and hinders the adoption of multimodal AI systems 
in practice. 

2.3. Edge–Cloud Computing in Healthcare 

Edge–cloud architectures have emerged as a promising paradigm for design-oriented 
scalable and responsive healthcare systems. In such architectures, the edge layer performs 
low-latency preprocessing and privacy-preserving data handling close to the data source, while 
the cloud layer supports large-scale model training, global updates, and long-term analytics 
[17], [29], [30]. This hierarchical structure enables a balance between computational efficiency 
and real-time responsiveness, which is critical for continuous health monitoring in remote 
and resource-limited environments. 

However, most existing edge–cloud implementations in healthcare remain unimodal or 
focus primarily on computational offloading without explicitly addressing the heterogeneity 
of multimodal health data. Signals originating from diverse sensors often differ in sampling 
rates, formats, and noise characteristics, complicating integration and learning. Moreover, 
many studies emphasize either system performance or computational efficiency, while over-
looking the integration of explainability within the edge–cloud pipeline. Consequently, achiev-
ing domain robustness, interpretability, and resource efficiency within a unified framework 
remains an open research challenge. 

2.4. Research Gap 

Although significant progress has been made in multimodal AI for healthcare, several 
critical gaps persist. First, few frameworks explicitly address cross-domain generalization, par-
ticularly the adaptation of models trained on large public datasets to locally collected wearable 
data. Second, edge–cloud integration for scalable and near real-time deployment remains un-
derdeveloped, as many systems continue to rely on centralized cloud-based inference. Third, 
model interpretability is often treated as an afterthought, leaving clinicians with limited insight 
into the physiological rationale behind AI-driven predictions. 

To address these gaps, this study introduces a domain-adaptive, SHAP-explainable, 
edge–cloud-enabled multimodal deep learning framework for pneumonia detection. The pro-
posed approach integrates heterogeneous physiological and acoustic data using adaptive fea-
ture alignment to enhance robustness across data sources. In addition, SHAP-based analysis 
is employed to quantify the relative contribution of each modality and feature group, provid-
ing interpretable insights aligned with clinical reasoning. By unifying distributed computation, 
multimodal learning, and explainable AI, the framework advances toward transparent, robust, 
and deployable pneumonia diagnostics suitable for low-resource environments. 

3. Methodology 

3.1. Framework Overview 

This section presents a hybrid edge–cloud computing framework designed to support 
intelligent and continuous health monitoring using wearable sensors. As illustrated in Figure 
1, raw sensor data are processed through two parallel and complementary pathways—edge 
and cloud—to balance low-latency responsiveness with computationally intensive analysis. In 
the proposed design, processing tasks are deliberately divided between the two layers to ex-
ploit the strengths of each. The edge layer prioritizes immediate, local processing close to the 
data source, while the cloud layer performs more complex, resource-intensive inference. This 
dual-processing strategy enables timely feedback without compromising analytical depth or 
model complexity. 
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The cloud processing path receives aggregated sensor data and applies a deep learning–
based classification model trained to identify complex temporal and cross-modal patterns as-
sociated with health risk. Because cloud infrastructure provides design-oriented scalable com-
putational resources, this module can execute multimodal fusion, long-term learning, and 
high-dimensional inference that would be infeasible on resource-constrained wearable de-
vices. The cloud model's output consists of refined risk estimates and severity assessments, 
which are forwarded to the central monitoring pipeline for integration. 

In parallel, the edge processing path performs immediate local analysis on or near the 
user’s device. This module executes two primary functions. First, signal-processing operations 
are applied to clean raw sensor data, reducing noise and normalizing baseline variations, pre-
paring the signals for rapid analysis. Second, a lightweight anomaly detection mechanism iden-
tifies deviations from the individual’s typical physiological patterns, enabling early warning 
detection with minimal latency. The outputs of the edge module are delivered directly to the 
local monitoring interface and simultaneously transmitted to the cloud for contextual inter-
pretation. 

The outputs from both processing paths converge in the real-time monitoring pipeline, 
which serves as the system's central decision-making hub. By integrating cloud-level analytical 
insights with edge-level anomaly indicators, the pipeline generates a holistic assessment con-
sisting of (i) a continuous risk probability score, (ii) a discrete severity category, and (iii) alert 
notifications for the user, caregiver, or clinician when predefined thresholds are exceeded. A 
key feature of the proposed framework is the adaptive feedback loop, also shown in Figure 
1, which connects the monitoring pipeline back to the edge processing module. This mecha-
nism allows cloud-derived risk assessments to recalibrate the sensitivity of local anomaly de-
tection. When elevated risk is identified, the edge module can be dynamically adjusted to 
enhance responsiveness to early warning signs, enabling personalized, progressively adaptive 
monitoring over time.  

 

Figure 1. Edge–cloud architecture for wearable-based pneumonia monitoring. 

3.2. Data Sources and Study Design 

3.2.1 Public Datasets 

Two public datasets were used to pretrain and benchmark unimodal components of the 
framework: 
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• MIMIC-III Waveform Database [31], which provides clinically annotated physiological 
time-series data from ICU patients with and without pneumonia. 

• Coswara Dataset [32], which contains crowd-sourced cough and breathing audio record-
ings collected under diverse environmental conditions. 

These datasets were used exclusively for modality-specific representation learning and base-
line validation, as they do not share common subjects and therefore cannot support synchro-
nized multimodal fusion. 

3.2.2. Local Clinical Dataset 

To enable synchronized multimodal fusion under realistic acquisition conditions, a clin-
ically supervised wearable monitoring study was conducted at the Federal University of Tech-
nology Akure Health Centre and McPherson University Health Centre in Nigeria between 
October 2024 and June 2025. Ethical approval was obtained from the institutional review 
board, and all participants provided written informed consent prior to enrollment. A total of 
52 volunteers (29 male, 23 female; mean age 58.2 years) were monitored continuously for 24 
hours using wearable sensors. Physiological signals were sampled at one-minute intervals, 
while cough events were captured using an event-triggered audio mechanism to reflect natu-
ralistic recording conditions. Following quality control procedures, 1,912 high-quality cough 
recordings and over 1,000 hours of physiological data were retained for analysis.  

Clinical ground-truth labels were adjudicated by attending clinicians based on physical 
examination and radiographic confirmation, resulting in 16 high-risk (pneumonia) and 36 low- 
to moderate-risk cases. While the cohort size reflects the practical constraints of supervised 
wearable data collection in real clinical settings, it provides a sufficiently controlled environ-
ment to examine multimodal signal coherence, cross-modal complementarity, and system-
level behavior under synchronized conditions. Accordingly, this dataset is used to evaluate 
integrated fusion, domain adaptation, and edge–cloud interaction, rather than to estimate 
population-level diagnostic prevalence or statistically powered clinical accuracy. 

3.2.3. Multi-source Dataset Composition and Rationale 

Table 1 summarizes the composition of each dataset source, including sample counts, 
recording duration, and class distribution, providing a unified view of data balance and po-
tential source bias. Table 2 describes the role of each dataset within the experimental design, 
clarifying how public and private data sources were used for pretraining, benchmarking, and 
multimodal evaluation. 

Table 1. Dataset composition and label distribution 

Dataset Source Data Type 
Samples 

(n) 
Duration 
(hours)* 

Pneumo-
nia (%) 

Healthy 
(%) 

MIMIC-III Physiological waveforms 4,200 280 50.0 50.0 

Coswara Cough & breathing audio 3,100 190 41.9 58.1 

Local Wearable Multisensor time-series 3,500 248 58.6 41.4 

Total — 10,800 718 50.5 49.5 
* Total duration refers to cumulative active recording time across all participants and devices, after 
filtering and cleaning. 

Table 2. Dataset usage and experimental role. 

Dataset Source Modality Access Primary Use in Study 

MIMIC-III PhysioNet Physiological vitals Public 
Pretraining physiological en-
coder; unimodal benchmark-

ing 

Coswara IISc Bangalore Cough audio Public 
Pretraining acoustic encoder; 

audio feature learning 

Local Clinical 
Dataset 

FUTA & McPherson 
Health Centres 

Multimodal (wearable 
+ static) 

Private 
Multimodal fusion; fine-tun-

ing; clinical evaluation 

 
Importantly, record-level fusion was not performed across datasets because the public 

repositories and the local clinical dataset do not share common subjects. Instead, true 
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multimodal fusion was evaluated exclusively on the local clinical dataset, where synchronized 
physiological, acoustic, and static data coexist for each participant. Public datasets were in-
corporated to enhance domain diversity and to pretrain modality-specific encoders, while 
cross-dataset experiments were used to assess robustness to domain shift rather than to con-
struct synthetic patient profiles. This design ensures methodological validity while supporting 
scalable model development across heterogeneous data sources. 

3.3. Preprocessing, Harmonization, and Domain Adaptation 

Combining heterogeneous data sources introduces variability in sampling rates, feature 
distributions, and signal quality. To mitigate these effects, a unified preprocessing and har-
monization pipeline was applied. 

• Feature alignment and missing modality handling: Common physiological features were 
mapped to standardized units across datasets. Modalities absent in a given dataset were 
represented using binary masks concatenated with the feature vectors, allowing the 
model to learn modality-invariant representations without conflating missing values with 
low signal values. 

• Per-source normalization: Each data source was normalized independently to prevent 
dominance by high-amplitude signals. Z-score normalization was applied to unbounded 
features: 

𝑥 =
𝑥 − 𝜇𝑠

𝜎𝑠
 (1) 

where 𝜇𝑠 and 𝜎𝑠 denote the mean and standard deviation of source 𝑠. Bounded phys-
iological signals were rescaled using min–max normalization, while audio features were 
normalized per utterance. 

• Domain alignment: To reduce source-dependent variance, adversarial domain adapta-
tion was implemented using a gradient reversal layer (GRL) prior to the fusion block 
[33]. Additionally, batch normalization statistics were re-estimated per source during 
fine-tuning, and optional Maximum Mean Discrepancy (MMD) regularization was ap-
plied in the latent space[34]. These strategies jointly encourage domain-invariant feature 
learning while preserving discriminative capacity. 

• Temporal imputation and signal quality weighting: Short missing segments in wearable 
data were interpolated using cubic splines, while longer gaps were masked. Each modal-
ity was weighted by a signal-quality index derived from noise metrics, allowing the fusion 
layer to downweight unreliable channels. 

3.4. Multimodal Model Architecture 

The proposed model consists of modality-specific encoders followed by a balanced fu-
sion mechanism, as summarized in Table 3, with the acoustic CNN sub-network illustrated 
in Figure 2. 

 

Figure 2. CNN architecture for cough spectrogram classification 
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Table 3. Multimodal model architecture and output dimensions. 

Module 
Layer / Compo-

nent 
Layer Type Configuration Output Dimension Description 

Acoustic Encoder 
(Audio Spectrogram 

– Coswara) 

Input — 
128×128 Mel-spec-

trogram 
(128, 128, 1) 

Time–frequency representa-
tion of cough audio 

Conv Block 1 Conv2D + ReLU 
32 filters, 3×3, stride 

1 
(126, 126, 32) 

Local acoustic pattern ex-
traction 

Max Pooling 1 MaxPooling2D 2×2 (63, 63, 32) 
Temporal–frequency reduc-

tion 

Conv Block 2 Conv2D + ReLU 64 filters, 3×3 (61, 61, 64) 
Mid-level acoustic feature 

learning 

Max Pooling 2 MaxPooling2D 2×2 (30, 30, 64) Spatial abstraction 

Conv Block 3 Conv2D + ReLU 128 filters, 3×3 (28, 28, 128) 
High-level acoustic represen-

tations 

Global Pooling 
Global Average Pool-

ing 
— (128,) 

Fixed-length audio embed-
ding 

Physiological En-
coder (Time-series – 
Wearable/MIMIC) 

Input — 
10 features × 300 

timesteps 
(300, 10) 

Multivariate physiological 
time-series 

Bi-LSTM Layer 1 Bi-LSTM 128 units (300, 256) 
Bidirectional temporal en-

coding 

Bi-LSTM Layer 2 Bi-LSTM 64 units (300, 128) 
Higher-order temporal ab-

straction 

Attention Layer Attention — (128,) 
Weighted temporal summa-

rization 

Static Feature En-
coder (Demo-

graphic/Clinical) 

Input — 
Age, sex, BMI, symp-

toms 
(8,) 

Encoded tabular static attrib-
utes 

Dense Layer Dense + ReLU 32 units (32,) 
Nonlinear feature transfor-

mation 

Dropout Dropout 0.2 (32,) Regularization 

Multimodal Fusion 
and Classification 

Concatenation — 
[Audio(128) + 
Physio(128) + 

Static(32)] 
(288,) Multimodal feature fusion 

Dense Layer Dense + ReLU 128 units (128,) Joint representation learning 

Dropout Dropout 0.3 (128,) Generalization control 

Output Layer Dense + Softmax 2 units (2,) Pneumonia risk classification 

 

3.4.1. Modality-specific Encoders 

• Acoustic Encoder: A lightweight CNN based on MobileNetV2 [35] processes log-mel 
spectrograms of cough events. 

• Physiological Encoder: A Bi-LSTM network [36] captures temporal dependencies in 
multivariate physiological time series. 

• Static Encoder: Demographic and clinical variables are processed using a small dense 
network. 

Each encoder outputs a fixed-dimensional embedding preserving the structural characteristics 
of its modality. 

3.4.2. Fusion and Balancing Strategy 

To prevent dominance of any modality, each embedding is projected into a shared latent 
space using learnable projection layers: 

ℎ̃𝑖  =  ReLU(𝑊𝑖ℎ𝑖 + 𝑏𝑖) (2) 

The balanced embeddings are then concatenated to form a unified representation: 

𝐻fused = [ℎ̃CNN‖ℎ̃BiLSTM‖ℎ̃Static] (3) 
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This fused vector is passed through fully connected layers to produce the final risk prediction. 
Alternative scalar modality-weighting was evaluated but omitted in deployment due to mini-
mal performance gains and higher computational cost. 

3.4.3. Learning Objective 

Model training minimizes a composite loss comprising binary cross-entropy for pneu-
monia risk prediction and an auxiliary domain-adaptation loss. The output is interpreted as a 
continuous risk probability, which is subsequently mapped to categorical risk levels for mon-
itoring purposes. 

3.5. Edge-side Adaptive Sensitivity Mechanism 

To maintain consistent performance across varying sensor and environmental condi-
tions, the edge module dynamically adjusts its alert threshold based on calibration feedback 

from the cloud. Let 𝑝𝑒 denote the edge-predicted pneumonia probability for a given data 
segment. Periodically, the cloud computes a calibration offset based on the discrepancy be-
tween cloud- and edge-level risk estimates: 

∆𝜏 = 𝜂(𝜇𝑝𝑐
− 𝜇𝑝𝑒

) (4) 

where 𝜇𝑝𝑐
 and 𝜇𝑝𝑒

 denote the mean predicted probabilities produced by the cloud and edge 

models, respectively, over synchronized samples, and 𝜂 ∈ [0,1] is the adaptation rate con-
trolling update smoothness. The edge decision threshold is then updated as: 

𝜏𝑒
(𝑡+1)

= 𝜏𝑒
(𝑡)

− ∆𝜏 (5) 

 

If the edge model is under-sensitive relative to the cloud (𝜇𝑝𝑐
< 𝜇𝑝𝑒

) the threshold is 
decreased to increase sensitivity; conversely, if the edge is over-sensitive, the threshold is in-
creased to reduce false alarms. This mechanism enables personalized sensitivity adjustment 
while preserving edge autonomy during intermittent connectivity, as threshold updates can 
be applied locally between cloud synchronizations. Algorithm 1 summarizes the adaptive sen-
sitivity update procedure. 
 

Algorithm 1. Adaptive Edge Sensitivity Update Using Cloud Feedback 
INPUT: Edge prediction probabilities 𝑝𝑒 over last 𝑁 samples; cloud prediction probabilities 

𝑝𝑐 ; adaptation rate 𝜂 
OUTPUT: Updated edge decision threshold 𝜏𝑒 
1: Collect local edge predictions 𝑝𝑒 from streaming sensor data 

2: Compute summary statistics (𝜇𝑝𝑒
, 𝜎𝑝𝑒

) at the edge 

3: Transmit summary statistics to the cloud for calibration. 

4: Compute cloud reference mean 𝜇𝑝𝑐
 using cloud model inference 

5: Compute calibration offset ∆𝜏 = 𝜂(𝜇𝑝𝑐
− 𝜇𝑝𝑒

)  
6: Update edge threshold 𝜏𝑒 ← 𝜏𝑒 − ∆𝜏 
7: Apply updated threshold for subsequent edge inferences until next synchronization 

 
The methodology described above defines the learning, adaptation, and deployment mecha-
nisms of the proposed framework, while the following section focuses on its empirical eval-
uation under controlled and clinically realistic conditions. Through the integration of multi-
modal learning, domain adaptation, and hierarchical edge–cloud computation, the proposed 
methodology provides a structured and deployment-aware approach to early pneumonia risk 
monitoring. The design emphasizes interpretability, robustness, and feasibility, forming the 
foundation for the experimental evaluation presented in Section 4. 

4. Experimental Setup 

This section describes the experimental protocol used to evaluate the proposed frame-
work, including dataset splits, training configuration, evaluation metrics, and implementation 
details. The experimental design explicitly distinguishes between method validation and 
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robustness analysis across heterogeneous data sources, in line with the study's multi-source 
nature. 

4.1. Experimental Protocol and Evaluation Scenarios 

To quantify both predictive performance and robustness to domain shift, experiments 
were conducted under four complementary evaluation scenarios: 

• Public-only evaluation: In this setup, training and testing were performed exclusively on 
publicly available datasets. Physiological models were trained and evaluated on MIMIC-
III waveform data, while acoustic models were trained and evaluated on Coswara. This 
scenario establishes unimodal baseline performance under controlled public data condi-
tions. 

• Private-only (local) evaluation : Training and testing were conducted solely on the locally 
collected clinical dataset from the two Nigerian hospitals. This scenario reflects the most 
clinically realistic deployment condition, as both training and inference data originate 
from the same acquisition environment, sensor hardware, and population. 

• Cross-domain evaluation: To quantify domain shift, models were trained on public da-
tasets and tested on local data, and vice versa. This analysis evaluates how differences in 
population, device characteristics, and acquisition protocols affect generalization, and 
highlights the need for domain adaptation. 

• Combined (multi-source) evaluation: In this scenario, public and local datasets were 
pooled at the dataset level (not the record level) to evaluate model behavior under het-
erogeneous multi-source training. As discussed in Section 3.2, this setup is intended to 
assess robustness and representation learning under domain diversity rather than to es-
timate clinical deployment performance. 

Across all scenarios, the same end-to-end multimodal evaluation pipeline was used, as illus-
trated in Figure 3, which shows how acoustic, physiological, and static inputs are integrated 
through the CNN, Bi-LSTM, and fusion network to produce pneumonia risk predictions. 
This unified pipeline ensures that performance differences across scenarios reflect data and 
domain effects rather than changes in model structure. 

 
Figure 3. Multimodal deep learning framework for pneumonia detection  

4.1.1. Baseline Models and Comparative Configurations 

To contextualize the performance of the proposed multimodal framework, several base-
line and comparative models were implemented using consistent preprocessing pipelines and 
training protocols. These baselines include classical machine learning models, unimodal deep 
learning models, and the proposed multimodal fusion network. Their configurations and key 
hyperparameters are summarized in Table 4. 

Logistic regression was implemented using a standard convex optimization solver (liblin-
ear) with L2 regularization. No learning rate was required, as optimization was performed 
using a second-order solver. SVM models serve as interpretable classical baselines for statis-
tical physiological features, while the CNN and Bi-LSTM models represent strong unimodal 
deep learning baselines for acoustic and physiological modalities, respectively. The multi-
modal fusion network integrates all available modalities and serves as the proposed system, 
evaluated across the experimental scenarios described in Section 4.1, with modality availability 
determined by each scenario’s data composition. 
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Table 4. Baseline model configurations and hyperparameters 

Model Input Type 
Key Layers / Pa-

rameters 
Activation Optimizer 

Learning 
Rate 

Dropout 

Logistic Re-
gression 

Statistical features 
(d = 20) 

Linear (L2 = 

1×10⁻⁴, liblinear 
solver) 

Sigmoid – – – 

SVM (RBF) 
Statistical features 

(d = 20) 
Kernel = RBF, C = 

1.0, γ = 0.1 
– – – – 

CNN 
128×128 log-mel 

spectrogram 

Conv(32, 3×3) → 
Conv(64, 3×3) → 

GAP → 
Dense(128) 

ReLU / 
Softmax 

Adam 1×10⁻⁴ 0.5 

Bi-LSTM 200×6 time-series 
Bi-LSTM(64) → 

Dense(64) 
Tanh / Soft-

max 
Adam 1×10⁻⁴ 0.3 

Multimodal 
Fusion Net-

work 

CNN + Bi-LSTM 
+ Static features 

Concat → 
Dense(128) → 

Dropout(0.3) → 
Dense(2) 

ReLU / 
Softmax 

Adam 1×10⁻⁴ 0.3 

4.2. Training Configuration 

All models were trained end-to-end using a unified optimization strategy to ensure fair 
comparison across unimodal, multimodal, and cross-domain evaluation scenarios. Unless 
stated otherwise, the same training configuration was applied to all experimental setups de-
scribed in Section 4.1. The complete training configuration is summarized in Table 5. 

Table 5. Training setup. 

Parameter Configuration Justification 

Epochs 120 (max) 
Provides sufficient convergence time for multi-

modal feature learning without overfitting 

Batch size 32 samples per update 
Balances gradient stability and GPU memory con-

straints for multimodal data fusion 

Optimizer Adam (Kingma & Ba, 2015) 
Adaptive learning suitable for mixed-modality data 

with sparse gradients 

Initial learning rate 1 × 10−4 
Standard starting rate for CNN–LSTM-based mul-

timodal learning 

Learning rate sched-
ule 

Cosine annealing with warm 
restarts every 20 epochs 

Encourages periodic exploration of new minima 
and stabilizes convergence 

Beta₁, Beta₂ (0.9, 0.999) Default Adam momentum parameters 

Epsilon 1 × 10−7 Numerical stability in variance updates 

Weight decay 1 × 10−5 Regularization to reduce overfitting in fusion layers 

Dropout rates 0.2–0.3 (layer-dependent) Enhances generalization during multimodal fusion 

Gradient clipping Global norm capped at 5.0 Prevents gradient explosion in recurrent layers 

Early stopping Patience = 10 epochs Terminates training when validation loss plateaus 

Model checkpointing Best validation loss Ensures optimal model state is used for evaluation 

Cross-validation 
5-fold stratified (per dataset 

source) 
Robust performance estimation across heterogene-

ous data 

 
Training was performed using the Adam optimizer with an initial learning rate of 

1 × 10−4 , which provided stable convergence for both convolutional and recurrent com-
ponents. To improve convergence stability and avoid poor local minima, a cosine annealing 
learning rate schedule with warm restarts every 20 epochs was employed. The learning rate at 
epoch 𝑡 follows: 
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𝜂𝑡 = 𝜂min +
1

2
(𝜂max − 𝜂min) (1 + cos (

𝜋𝑇cur

𝑇max
)) (6) 

where 𝜂max = 1 × 10−4, 𝜂min = 1 × 10−6, and 𝑇cur resets every 20 epochs.  
Models were trained for a maximum of 120 epochs with a batch size of 32, and early 

stopping was applied when the validation loss failed to improve for 10 consecutive epochs. 
Gradient clipping was applied with a global norm threshold of 5.0 to prevent instability during 
recurrent optimization. Dropout regularization (0.2–0.3, depending on layer) and L2 weight 

decay (1 × 10−5) were used to mitigate overfitting in the fusion layers. Training typically 
converged after approximately 85 epochs. For reproducibility, all random seeds were fixed to 
42, and the model state corresponding to the lowest validation loss was saved and used for 
subsequent evaluation. 

4.3. Evaluation Metrics and Statistical Analysis 

Model performance was evaluated using standard classification metrics commonly 
adopted in clinical decision support studies: Accuracy, Sensitivity (Recall), Specificity, Preci-
sion, F1-score, and Area Under the Receiver Operating Characteristic Curve (AUC). Sensi-
tivity was emphasized because minimizing missed pneumonia cases is clinically important, 
particularly in early risk-monitoring scenarios. To quantify uncertainty in model performance, 
95% confidence intervals for AUC were estimated using bootstrap resampling with 1,000 
iterations. Statistical comparisons between evaluation scenarios were conducted using the 
DeLong test for correlated ROC curves, enabling principled comparison of AUC values 
across models and data regimes. When multiple pairwise comparisons were performed, the 
Bonferroni correction was applied to control for Type I error.  

In multi-source and cross-domain experiments, where class imbalance and domain het-
erogeneity were more pronounced, the Matthews Correlation Coefficient (MCC) was addi-
tionally reported as a balanced performance measure that remains informative under skewed 
class distributions. The specific combination of evaluation metrics reported for each experi-
mental scenario is summarized in Table 6, ensuring transparent alignment between evaluation 
objectives and reported results. 

Table 6. Evaluation protocol and metrics per experimental scenario 

Experiment Type Dataset Split 
Cross-  

Validation 
Evaluation Metrics Purpose 

Public-only 80/10/10 5-fold 
Accuracy, Precision, 

Recall, F1, AUC 
Baseline validation on public 

datasets 

Private-only (Local) 70/15/15 5-fold 
Accuracy, Precision, 

Recall, F1, AUC 

Local generalization under 
realistic deployment condi-

tions 

Cross-domain 
(Public → Private) 

Train public / 
Test private 

– AUC, F1 
Quantification of domain 
shift and transfer perfor-

mance 

Combined (Do-
main-adapted) 

Stratified merge 
(dataset-level) 

– Accuracy, F1, MCC 
End-to-end robustness under 
heterogeneous data sources 

4.4. Implementation and Deployment Simulation 

Cloud-side training was performed on a workstation equipped with an NVIDIA RTX 
3090 GPU. Edge-side inference was evaluated on an NVIDIA Jetson Xavier device to assess 
feasibility under constrained computational resources. All models were implemented in Ten-
sorFlow 2.12. 

The edge–cloud interaction was simulated using a Wi-Fi (802.11ac) network with an av-
erage uplink bandwidth of 50 Mbps and latency ranging from 25–40 ms. Network latency was 
modeled as a Gaussian variable (μ=30 ms, σ=10 ms). To minimize bandwidth usage, only 
compressed multimodal feature vectors (approximately 150 KB per minute) were transmitted 
to the cloud. Edge inference latency was estimated using TensorFlow Lite profiling for mod-
els of comparable size (~2.7M parameters). Energy consumption was estimated using 
NVIDIA’s tegrastats tool and the Jetson Energy Estimator, yielding an average draw of 
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approximately 3.2 W during active inference. These estimates are consistent with low-power 
IoT deployment requirements. Cloud-side processing, including model retraining and SHAP-
based interpretability analysis, was performed asynchronously and did not contribute to real-
time latency. 

4.5. Reproducibility and Transparency 

To support reproducibility, all experiments were conducted with fixed random seeds, 
and training logs, learning rate schedules, and checkpointed weights were archived. Source 
code for model training and evaluation will be released upon publication, while a de-identified 
feature-level dataset derived from the local clinical study will be available upon reasonable 
request, in accordance with ethical approval and data use agreements. This experimental setup 
provides a rigorous and transparent evaluation of the proposed edge–cloud multimodal 
framework under controlled, clinically realistic, and cross-domain conditions. By explicitly 
separating performance assessment from robustness analysis, the protocol supports a nu-
anced interpretation of results presented in Section 5. 

5. Results and Discussion 

This section presents the experimental results of the proposed edge–cloud multimodal 
framework and discusses their implications in terms of diagnostic performance, robustness, 
deployment feasibility, and interpretability. Results are organized to progressively evaluate 
predictive accuracy, domain robustness, architectural contributions, system-level feasibility, 
and clinical transparency. 

5.1. Overall System Performance Across Evaluation Scenarios 

Table 7 summarizes the predictive performance of the proposed edge–cloud multimodal 
framework across four evaluation scenarios: public-only, private-only (local), combined multi-
source, and cross-domain transfer. These scenarios were designed to separately assess uni-
modal baseline behavior, clinically realistic local performance, robustness under heterogene-
ous training conditions, and sensitivity to domain shift, rather than to provide a single esti-
mate of population-level diagnostic accuracy. In the combined multi-source evaluation, the 
framework achieved its highest performance, with an AUC of 0.95 (95% CI: 0.93–0.96), sen-
sitivity of 94.3%, and specificity of 90.1%. This result indicates a consistent, balanced multi-
modal diagnostic signal when heterogeneous data sources are jointly leveraged in a controlled, 
robust setting. Importantly, this scenario reflects representation learning and domain robust-
ness rather than a realistic deployment condition, as public and local datasets are pooled at 
the dataset level. 

Table 7. Performance under three dataset setups 

Scenario 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
F1-score AUC (95% CI) 

Public-only (MIMIC & Coswara) 82.4 ± 3.1 80.2 ± 4.0 84.1 ± 2.7 0.81 ± 0.03 0.88 (0.85–0.90) 

Private-only (Local) 79.7 ± 4.8 85.0 ± 5.0 77.3 ± 4.2 0.80 ± 0.04 0.86 (0.81–0.90) 

Combined (Public + Local) 92.6 ± 2.0 94.3 ± 1.6 90.1 ± 2.3 0.92 ± 0.02 0.95 (0.93–0.96) 

Public → Private 76.5 ± 3.9 79.1 ± 4.5 74.0 ± 4.1 0.77 ± 0.03 0.83 (0.79–0.87) 

Private → Public 74.8 ± 4.5 78.6 ± 5.2 71.4 ± 3.8 0.76 ± 0.04 0.82 (0.78–0.86) 

 
When evaluated exclusively on the local clinical cohort, the model achieved an AUC of 

0.86 (95% CI: 0.81–0.90), with sensitivity of 85.0% and specificity of 77.3%. This private-
only evaluation represents the most clinically realistic scenario, as both training and inference 
data originate from the same acquisition environment, sensor configuration, and population. 
Due to the limited number of pneumonia-positive cases in the local cohort, these results 
should be interpreted as evidence of consistent multimodal signal presence and system feasi-
bility, rather than definitive clinical diagnostic accuracy. Cross-domain transfer experiments 
(public → private and private → public) exhibited a measurable performance drop, with AUC 
values of 0.83 and 0.82, respectively. This degradation reflects systematic differences in pop-
ulation characteristics, sensor properties, and acquisition conditions between public 
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repositories and locally collected wearable data. Rather than indicating model failure, this be-
havior serves as a diagnostic indicator of domain shift and underscores the need for local 
adaptation for reliable deployment in real-world settings. 

The results demonstrate that while public datasets provide useful pretraining signals for 
modality-specific encoders, stable performance in realistic clinical environments requires syn-
chronized local data and domain-aware adaptation. Taken together, these findings support 
the central claim of this study: that multimodal fusion within an edge–cloud framework can 
produce consistent early risk signals under heterogeneous conditions, and that synchronized 
local data and domain-aware adaptation are essential for achieving stable behavior in realistic 
clinical settings. 

5.2. Robustness to Domain Shift, Data Diversity, and Local Adaptation 

When models trained on public datasets were evaluated on locally collected clinical data, 
performance decreased noticeably, with AUC dropping from 0.95 (combined multi-source 
evaluation) to 0.83 under cross-domain testing (Public → Private), as shown in Table 9. A 
similar degradation was observed in the reverse direction (Private → Public), confirming that 
domain shift affects both training-to-deployment and deployment-to-benchmark transfer sce-
narios. This degradation reflects differences in population demographics, sensor characteris-
tics, and acquisition environments between public and local data sources. Public datasets such 
as MIMIC-III and Coswara are predominantly derived from Western populations and con-
trolled recording environments, whereas the local dataset reflects real-world conditions in 
Nigerian clinical settings, including differences in baseline physiological ranges, ambient 
noise, and wearable sensor placement. These factors introduce systematic distributional shifts 
that cannot be resolved through naïve data pooling alone. 

Importantly, the observed performance drop should not be interpreted as a failure of 
the model, but rather as a diagnostic indicator of domain bias and limited generalization in-
herent in single-source training. By incorporating locally collected data into the combined 
training regime and applying domain adaptation strategies (Section 3.3), the model partially 
mitigated this shift, recovering performance to an AUC of 0.95. This demonstrates that local 
adaptation is essential for achieving stable performance in real-world deployment environ-
ments. Beyond methodological implications, these findings highlight a broader equity issue in 
clinical AI. Models trained exclusively on large public datasets may not generalize reliably to 
underrepresented populations, even when overall accuracy appears high in benchmark set-
tings. The results of this study therefore underscore the necessity of local data integration—
not as a refinement step, but as a core design principle for responsible, globally deployable 
healthcare AI systems. 

5.3. Comparison with Prior Studies 

To contextualize performance, Table 8 compares the proposed system with representa-
tive state-of-the-art unimodal methods, all evaluated on the same public datasets. While prior 
studies focused on single-modality learning, the proposed framework integrates multimodal 
fusion and domain-adaptive fine-tuning on a clinically paired dataset. 

Table 8. Comparison with prior studies 

Study Methodology Dataset Used Accuracy (%) AUC 

Brown et al. [4] CNN (Audio) Coswara 84.2 0.88 

Sharma et al. [28] VGGish + LSTM (Audio) Coswara 86.5 0.90 

Liu et al. [17] Bi-LSTM (Vitals) MIMIC 88.1 0.91 

Proposed (Ours) CNN–BiLSTM–Static (Fusion) Local Clinical* 92.6 ± 2.0 0.95 

*Sub-networks were pretrained on public datasets; fusion and evaluation were performed on synchro-
nized local clinical data. 

 
The observed performance gain arises from three complementary factors: (i) multimodal 

fusion that captures both physiological and acoustic manifestations of respiratory disease, (ii) 
explicit domain adaptation that reduces distributional mismatch between public and local 
data, and (iii) interpretability-aware modeling that aligns predictions with known clinical mark-
ers. Importantly, this comparison highlights methodological advancement rather than direct 
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dataset-level superiority, as the proposed model is evaluated under more realistic clinical con-
ditions. These results suggest that performance improvements are not solely attributable to 
model architecture, but to the integration of learning, adaptation, and deployment design. In 
this sense, the proposed framework extends prior work by addressing not only detection ac-
curacy, but also robustness and clinical viability. 

5.4. Ablation Study: Contribution of Each Modality 

Table 9 presents the ablation results evaluating the contribution of each modality under 
controlled removal settings. 

Table 9. Ablation results 

Configuration Modalities Used Dataset Source Accuracy (%) AUC (95% CI) 

Model 1 Physiological Public + Local 87.8 ± 3.1 0.90 (0.88–0.92) 

Model 2 Audio Public + Local 85.2 ± 2.7 0.88 (0.85–0.90) 

Model 3 Static Local 79.5 ± 3.9 0.83 (0.80–0.86) 

Model 4 Physio + Audio Local 91.4 ± 2.4 0.94 (0.91–0.95) 

Model 5 Physio + Static Local 89.7 ± 2.8 0.92 (0.89–0.94) 

Model 6 Audio + Static Local 86.9 ± 2.9 0.89 (0.87–0.91) 

Model 7 Full (All) Local 92.6 ± 2.0 0.95 (0.93–0.96) 

 
The results confirm that multimodal synergy, rather than model capacity alone, drives 

performance gains. Physiological and acoustic features consistently form the dominant diag-
nostic pair, while static variables act as contextual enhancers that improve calibration but 
contribute less standalone discriminative power. Notably, the performance gap between uni-
modal and multimodal configurations (AUC 0.90 → 0.95) demonstrates that the system’s 
strength lies in cross-modal complementarity, not in overfitting to a single signal source. This 
supports the design choice to prioritize synchronized multimodal fusion on the local clinical 
dataset. 

5.5. Edge–Cloud Adaptation and Deployment Feasibility 

The adaptive sensitivity mechanism described in Section 3.5 was evaluated through de-
ployment simulation. Figure 4 illustrates the feedback loop, while Table 10 summarizes la-
tency and energy consumption under different configurations. 

 

Figure 4. Adaptive Sensitivity Update Loop 

Table 10. Edge–cloud simulation results 

Mode Edge Load (%) Latency (ms) Power (W) Comment 

Edge-only 100 135 3.2 Real-time, higher energy 

Cloud-only 0 250 <1 Network-dependent 

Hybrid 60 160 2.4 Balanced, optimal 
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Hybrid processing achieves a favorable trade-off between responsiveness and efficiency, 
remaining well below the 1-second latency threshold for continuous monitoring. These re-
sults indicate that adaptive edge–cloud coordination is not only feasible but also practically 
beneficial, enabling real-time monitoring without excessive energy or bandwidth costs. While 
these findings are based on simulation rather than longitudinal deployment, they provide ev-
idence that the proposed architecture can operate within the constraints of wearable and low-
resource clinical environments. 

5.6. Interpretability and Clinical Consistency Analysis 

To assess whether the proposed multimodal framework produces clinically meaningful 
and transparent predictions, model interpretability was analyzed using SHapley Additive ex-
Planations (SHAP). SHAP enables both global and local explanations by quantifying each 
feature's contribution to model outputs [37]–[39], providing insight into how multimodal sig-
nals jointly influence pneumonia risk estimation. 

Interpretability analysis was conducted using Gradient SHAP (SHAP v0.43) on the 
trained multimodal model. For each evaluation fold, SHAP values were computed for 1,000 
randomly sampled instances, equally distributed across the MIMIC, Coswara, and local wear-
able datasets, to ensure balanced representation across sources. Feature values were normal-
ized per source prior to explanation to avoid scale-induced bias. 

5.6.1. Global Feature Importance 

Table 11 summarizes global feature importance measured as mean absolute SHAP val-
ues aggregated across all samples, while Figure 5 presents the corresponding beeswarm plot.. 

Table 11. Global feature importance 

Rank Feature Source Modality Mean Std. Interpretation 

1 Oxygen Saturation 

(SpO₂) 

Wearable / 
MIMIC 

0.162 0.041 Lower SpO₂ strongly increases 
pneumonia risk 

2 Cough Energy (dB) Audio (Coswara) 0.143 0.035 Strong cough intensity correlates 
with infection 

3 Respiratory Rate Wearable / 
MIMIC 

0.129 0.037 Elevated rate distinguishes pneu-
monia 

4 Temperature Wearable 0.111 0.030 Fever contributes to higher risk 
prediction 

5 MFCC₁₃ (Spectral 
Flatness) 

Audio 0.094 0.028 Voice spectral distortion signals 
respiratory distress 

6 Heart Rate Variability Wearable 0.087 0.026 Reduced HRV indicates physio-
logical stress 

7 Age Static 0.076 0.021 Older patients more likely to be 
high-risk 

8 Cough Duration (ms) Audio 0.062 0.019 Prolonged cough associated with 
pneumonia 

9 Respiration-Temper-
ature Interaction 

Fused 0.057 0.018 Nonlinear interaction between 
features 

10 Device Signal Quality 
Index 

Static 0.049 0.017 Low SQI slightly lowers confi-
dence in detection 

 
Across all datasets, oxygen saturation (SpO₂), cough energy, and respiratory rate con-

sistently emerged as the most influential predictors of pneumonia risk. These features are 
well-established clinical indicators of respiratory compromise, suggesting that the model’s de-
cision-making process is grounded in physiologically meaningful biomarkers rather than spu-
rious correlations. 

Importantly, acoustic features derived from cough signals (e.g., cough energy, MFCC₁₃, 
and cough duration) were complementary to physiological vitals. This supports the design 
choice of multimodal fusion, as audio-based biomarkers captured respiratory distress patterns 
that were not fully represented in vital signs alone. Static demographic features (age, device 
signal quality index) contributed secondary but stabilizing effects, primarily modulating risk 
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estimates in borderline cases. The presence of a fused interaction term (respiration–tempera-
ture interaction) among the top ten features further indicates that the model learns nonlinear 
relationships across modalities, reflecting the multifactorial nature of pneumonia symptoms. 

 

Figure 5. SHAP summary plot (beeswarm) 

5.6.2. Local Case Explanations 

To examine individual decision behavior, local SHAP explanations were analyzed for 
representative true-positive, false-negative, and false-positive cases. Table 12 summarizes the 
relative contribution of each modality, while Figure 6 illustrates a representative force plot for 
a pneumonia-positive case. 

Table 12. Feature-level SHAP contribution by modality 

Modality Top SHAP Features Contribution (%) 

Physiological SpO₂, respiratory rate 41.3 

Audio Cough energy, MFCC₁₃ 36.7 

Static Age, temperature 22.0 

 

Figure 6. SHAP force plot (local case) 
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Local explanations reveal that high-risk predictions are typically driven by a convergence 

of abnormal vitals (low SpO₂, elevated respiratory rate) and strong acoustic markers (high 
cough energy), while static features amplify or attenuate the final risk score. In contrast, false 
negatives were often associated with weak or noisy acoustic signals combined with mild phys-
iological abnormalities, indicating that sensor quality and transient conditions remain im-
portant sources of uncertainty. False positive cases commonly involved temporary fever or 
irregular breathing patterns; SHAP correctly highlighted these features as dominant contrib-
utors, demonstrating that the model’s errors are traceable and clinically interpretable rather 
than opaque. 

5.6.3. Cross-Dataset Consistency of Explanations 

To evaluate whether interpretability remains stable across heterogeneous sources, SHAP 
importance values were averaged per dataset (Table 15). 

Table 13. Cross-dataset SHAP comparison 

Feature MIMIC Coswara Local Comment 

SpO₂ 0.175 — 0.151 Universal pneumonia indicator 

Respiratory rate 0.142 — 0.133 Consistent across sensors 

Cough energy — 0.163 0.095 More discriminative in Coswara 

Temperature 0.118 — 0.107 Slightly higher importance locally 

HRV — — 0.092 Unique to wearable data 

 
While absolute SHAP magnitudes varied across datasets, the relative ordering of clini-

cally relevant features remained largely consistent. Physiological features dominated MIMIC-
derived explanations, acoustic features were more prominent in Coswara, and wearable-spe-
cific signals (HRV, SQI) emerged only in local data. This pattern confirms that the model 
adapts its reasoning to available modalities without altering its core clinical logic. 

5.6.4. Summary of Interpretability Findings 

• Overall, the SHAP analysis provides converging evidence that the proposed framework 
is: 

• Clinically grounded, as dominant features align with established pneumonia biomarkers. 

• Multimodally coherent, with different modalities contributing complementary evidence 
rather than redundant signals. 

• Robust across domains, as interpretability patterns remain stable despite population and 
device differences. 

• Transparent and auditable, enabling clinicians to trace both correct and incorrect predic-
tions to specific physiological or acoustic factors. 

These findings indicate that interpretability is not merely an auxiliary visualization step, but 
an integral component of the edge–cloud framework, supporting trust, debugging, and even-
tual clinical adoption. 

6. Conclusion 

This study investigated the feasibility of an edge–cloud integrated multimodal framework 
for early pneumonia risk monitoring using wearable sensors. By combining physiological sig-
nals, cough acoustics, and static clinical attributes within a domain-adaptive learning architec-
ture, the proposed system demonstrated consistent diagnostic signal across public datasets, 
locally collected clinical data, and cross-domain evaluation scenarios. Rather than optimizing 
for a single dataset, the framework was explicitly designed to address data heterogeneity, de-
ployment constraints, and clinical transparency, which are critical for real-world use in re-
source-limited settings. A key contribution of this work is the demonstration that multimodal 
fusion, when coupled with domain adaptation and hierarchical computation, can yield robust, 
interpretable risk estimates without continuous cloud connectivity. The edge–cloud architec-
ture enables low-latency local triage while preserving the ability to perform computationally 
intensive fusion and explanation in the cloud. Interpretability analysis using SHAP further 
showed that model predictions are driven by clinically meaningful biomarkers, such as oxygen 
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saturation, respiratory rate, and cough energy, supporting alignment between the model's rea-
soning and established clinical knowledge. 

From a practical perspective, the deployment in Nigerian primary healthcare centers il-
lustrates how AI-based monitoring systems can augment limited clinical capacity. Continuous, 
non-invasive monitoring offers a complementary layer of early warning in environments 
where diagnostic resources and staffing are constrained. Importantly, the system does not aim 
to replace clinical judgment, but to provide decision support that is transparent, auditable, 
and adaptable to local conditions. Despite these encouraging findings, several limitations 
should be acknowledged. The clinical cohort size remains modest, and although the total 
monitoring duration is substantial, larger, more diverse populations are needed to validate 
generalizability. In addition, interpretability was evaluated post hoc and not yet integrated into 
real-time edge interfaces, which may limit immediate clinical usability. The adaptive edge 
mechanism was evaluated in controlled simulations rather than in continuous long-term de-
ployment, and future studies should assess its stability under extended real-world operation. 

Future work will focus on expanding multi-site clinical studies across diverse ecological 
and demographic settings, integrating self-supervised learning to reduce dependence on la-
beled data, and developing lightweight on-device interpretability mechanisms. These direc-
tions are essential steps toward translating multimodal AI monitoring systems into sustaina-
ble, clinically accepted tools for global respiratory health.. 
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