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Abstract: The rapid growth in vehicle ownership has led to increased traffic congestion, making the 

need for autonomous driving solutions more urgent. Autonomous Vehicles (AVs) offer a promising 

solution to improve road safety and reduce traffic accidents by adapting to various driving conditions 

without human intervention. This research focuses on implementing Deep Q-Network (DQN) to en-

hance AV performance in different driving modes: safe, normal, and aggressive. DQN was selected 

for its ability to handle complex, dynamic environments through experience replay, asynchronous train-

ing, and epsilon-greedy exploration. We designed a simulation environment using the Highway-env 

platform and evaluated the DQN model under varying traffic densities. The performance of the AV 

was assessed based on two key metrics: success rate and total reward. Our findings show that the DQN 

model achieved a success rate of 90.75%, 94.625%, and 95.875% in safe, normal, and aggressive modes, 

respectively. Although the success rate increased with traffic intensity, the total reward remained lower 

in aggressive driving scenarios, indicating room for optimization in decision-making processes under 

highly dynamic conditions. This study demonstrates that DQN can adapt effectively to different driv-

ing needs, but further optimization is needed to enhance performance in more challenging environ-

ments. Future work will focus on improving the DQN algorithm to maximize both success rate and 

reward in high-traffic scenarios and testing the model in more diverse and complex environments. 

Keywords: Autonomous Vehicles; Deep Q-Network; Driving Modes; Highway-env; MLP; Reinforce-

ment Learning; Traffic Simulation.  

 

1. Introduction 

The rapid growth of vehicles has led to increased road congestion, thus requiring higher 
driving skills, especially in complex traffic conditions. Recent studies have shown a significant 
increase in vehicle ownership, contributing to traffic congestion on highways and urban ar-
eas[1], [2]. Therefore, the need for safer and more efficient driving solutions is increasingly 
urgent. One promising approach to address this problem is the development of Autonomous 
Vehicles (AVs)[3]–[8]. AVs have the potential to move autonomously without human inter-
vention, making them a viable solution to improve road safety and reduce traffic accidents. 
One important aspect of AV operation is adjusting the driving mode, especially on highways 
with various traffic conditions. For example, when traffic is smooth, AVs can operate at high 
speeds, but when traffic is heavy, AVs must reduce speed and maintain a safe distance from 
other vehicles. This adjustment of the driving mode is generally regulated through reinforce-
ment learning (RL) algorithms[6]–[8]. Reinforcement learning helps AVs make decisions 
based on Action Space (A), State Space (S), Reward (R), and Discount Factor (γ)[9], allowing 
AVs to function effectively in dynamic and complex environments. Reinforcement learning 
(RL) methods are generally divided into two types: model-free reinforcement learning 
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(MFRL) and model-based reinforcement learning (MBRL)[10]. In MFRL, agents learn di-
rectly from the experience of interacting with the environment without requiring a predictive 
model of the environment itself. Examples of MFRL models that are often used are Soft 
Actor-Critic (SAC)[11], [12], Deep Q-Learning (DQN)[5], [13]–[16], Advantage Actor-Critic 
(A2C)[17], [18], and Proximal Policy Optimization (PPO)[13], [19], [20]. In contrast, MBRL 
uses a more structured approach by modeling the environment to predict the outcomes of 
various actions taken. One of the popular MBRL methods is Monte Carlo (MC), which re-
quires specific sample data to ensure prediction accuracy[21]–[23]. 

The main advantage of MFRL is its flexibility in environmental exploration and decision-
making, as it is not bound by a rigid environmental model[21]. However, MFRL usually re-
quires more interactions with the environment to achieve optimal results. On the other hand, 
MBRL is often more efficient regarding sample data usage, as the agent is trained based on a 
more structured environmental model. However, the success of MBRL depends heavily on 
how accurately the environmental model can represent real conditions[23]. Of the various 
methods available in RL, several approaches, such as PPO, A2C, and SAC have been widely 
used in autonomous vehicle simulation. PPO, for example, is known for its ability to handle 
dynamic environments but often requires intensive hyperparameter tuning and faces chal-
lenges in training stability. Although A2C and SAC are effective in some aspects, they have 
limitations in terms of sample and memory usage efficiency. 

One of the prominent methods in the MFRL category is DQN. DQN has several ad-
vantages, such as prioritizing experience replay, asynchronous training, and calculating the 
loss matrix, reducing sample selection complexity[24]. In addition, the recursive nature of 
DQN allows for improved performance in partially observed environments and can be easily 
scaled as the complexity of observations increases. DQN is also known to be stable in training 
and can handle exploration-exploitation problems through the epsilon-greedy technique [25]. 
Compared with methods such as PPO, DQN is more efficient in sample and memory usage. 
Meanwhile, PPO often faces stability challenges in more complex environments and requires 
deeper hyperparameter tuning to achieve optimal performance[26]. After considering these 
methods' various advantages and disadvantages, this study focuses on exploring DQN as the 
main model. This study aims to: 
• Develop the best setting of the DQN model with different driving modes (safe, normal, 

and aggressive), so that the Autonomous Vehicle (AV) can be more flexible in adjusting 
to user needs. 

• Evaluate the model's performance by measuring and analyzing the success rate and total 
reward obtained by the DQN agent in driving scenarios with varying traffic conditions. 
This paper is structured as follows: Section 2 contains a literature review on reinforce-

ment learning methods in autonomous vehicles. Section 3 describes the methodology, includ-
ing the design of the simulation environment and DQN architecture. Section 4 presents the 
results and discussion of the experiments, and Section 5 offers conclusions and directions for 
further research. 

2. Related Works 

In recent years, there has been a large number of studies studying autonomous vehicles, 
given their increasingly massive production rates. Along with that, advances in the field of RL 
have driven its application in various fields, especially in autonomous vehicles. Several studies 
have proposed different methods according to the problems' complexity. Previous research 
[19] used PPO to accelerate the training process by testing three different approaches, namely 
Curriculum Proximal Policy Optimization (CPPO) and two PPOs with clipping parameters 
settings (ε = 0.15, 0.25), which were applied to the highway-env environment with the inter-
section type. The three methods were trained using a fully connected network with one hid-
den layer consisting of 128 units for the action network, and 64 units for the critical network. 
Optimization was performed using the Adam optimizer and consistent parameters, such as a 
discount factor of 0.9 and 20 epochs. The results showed that CPPO was able to accelerate 
the training process by 47.2% faster than PPO1, and 40.2% faster than PPO2. In terms of 
success rate and collision rate, CPPO showed better results with a success rate of 78.5%, 
compared to PPO1 (76.5%) and PPO2 (72%). Meanwhile, the failure rate (collision rate) of 
CPPO was lower, at 21.5%, compared to PPO1 (23.5%) and PPO2 (28%). Another study 
[12] used SAC as an RL method, with SVL SUMO and Carla-based environmental simulation 
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spaces. Testing was carried out in a roundabout scenario, with five different scenarios focused 
on variations in roundabout diameter (16m, 20m, 32m, 40m, and 50m). The model was ran-
domly trained using 52 routes involving various roundabout sizes for 5700 episodes, with a 
discount factor of 1.0. This model uses three hidden layers for the q-model and three for the 
policy model. The test results show that the SAC agent can achieve a success rate of 73% in 
some scenarios but still shows limitations in scenarios with larger diameters. 

Another study used A2C) in a highway exit-entry scenario, which distinguished two types 
of agents: egoistic agents (egoistic AVs) and altruistic agents (altruistic AVs)[18]. Egoistic 
agents tended to perform worse, only able to cover a distance of 227.6m with a high collision 
failure rate (77.6% and 78.2%), while altruistic agents were able to cover a distance of up to 
498.2m with a much lower collision failure rate (2.1% and 16.3%). 

Another study examined DQN applied to autonomous vehicles in a highway-env simu-
lation environment consisting of a straight highway with varying levels of traffic density[27]. 
The results of the four scenarios show that at low to medium traffic density (20 to 40 vehi-
cles/frame), the DQN agent can achieve a success rate of up to 94.875%, with an average 
reward of 34.45. However, at higher traffic density (60 to 80 vehicles/frame), the DQN per-
formance drops significantly, with the success rate dropping to 61% and the reward reaching 
only 19 points. This indicates that the DQN agent must still be optimized to adapt to denser 
environments. Although many studies have been conducted to apply various RL methods, 
such as PPO, SAC, A2C, and DQN in autonomous vehicle simulations, most studies focus 
on training efficiency and vehicle performance under stable traffic conditions. However, stud-
ies evaluating the performance of DQN under different driving modes—such as safe, normal, 
and aggressive—are still very limited. In addition, there is a lack of understanding of how 
DQN performs in high-density and dynamic traffic scenarios. This study aims to fill this gap 
by exploring the performance of DQN in three different driving modes and more dynamic 
traffic conditions, making new contributions to understanding and optimizing DQN in au-
tonomous vehicle simulation. 

3. Methodology 

This section will provide a comprehensive system overview, starting with an overview 
to provide context. Next, we will discuss the development of the toll road environment and 
scenarios, along with some explanations. Finally, we will describe the in-depth design of each 
DQN component, detailing the architecture and rationale behind each design decision. 

3.1. System Overview 

This study uses modules such as DQN agent, action, and environment, which are then 
integrated into one system architecture. Figure 1 illustrates a summary of the system on the 
autonomous car agent. Highway-env as an environment is used to take the value of the ob-
servation results when the agent is in the current state using the Python API. With the previ-
ous state's reward, it is entered into the DQN agent framework to be trained as input using 
the MLP policy. The DQN agent will issue output in the form of actions taken based on the 
Q-value [5], [28] of the MLP policy, and provide a response to the environment that continues 
to the next system series. 

 

Figure 1. An overview of the system architecture 
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3.2. Simulation Environment 

Several open-source libraries for the environment are widely developed for training and 
testing on RL algorithms. Many simulators are used in the field of autonomous vehicle re-
search, such as Highway-env[19] and [29]. Highway-env is used to train the autonomous ve-
hicle control function or agent (in green), as depicted in Figure 2. 

In training autonomous vehicles in the environment, the Stable-Baseline 3 assistance 
tool is used to observe and develop DQN agents against the environment provided. Stable-
Baseline 3 also has a replay buffer feature which plays a crucial role in storing training result 
data, namely [state, action, reward] so that agents can adapt to the environment quickly. 

 

Figure 2. A snapshot of the autonomous vehicle environment during training simulation 

3.3. Custom Scenarios Development 

Many types of environments can be used when using the Highway-env simulator. The 
research used the type of environment in the form of a toll road. The environment can be 
configured as in Table 1 according to the scenario. The configuration carried out is changing 
the number of lanes in the toll road environment to 3 lanes, the configuration of the value of 
each reward, the length of the agent training period in the environment, the number of ob-
stacles which in the case of autonomous cars is the number of surrounding cars, and the level 
of traffic density. 

Table 1. Environment configurations 

Configuration Values 

action_type 1 DiscreteMetaAction 

lanes_count 3 

duration 40 

vehicles_count 20 

vehicles_density 1 

collision_reward -1 

right_lane_reward 0.1 

high_speed_reward 0.3 

lane_change_reward 0.1 

 
In each scenario, the setting used is a toll road simulation. The toll road is filled with 

agents and several vehicles surrounding the agent. The initial position, speed, and destination 
of vehicles other than the agent are initialized randomly. The agent will run at a speed that 
has been adjusted in Table 2. The goal of the agent itself is to survive as long as possible on 
the toll road simulation and avoid collisions with other vehicles. 

Table 2. Driving speed scenario 

Scenario Speed range 

Safe [17,20, 22] 

Normal [17,20, 25] 

Aggressive [17,25, 28] 
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Table 3 shows an example of kinematic observations taken by the ego vehicle during the 
simulation. In this simulation, several vehicles are monitored by the agent, including the ego 
vehicle itself and two other vehicles (vehicle 1 and vehicle 2). Each vehicle is monitored based 

on its position (𝑥 dan y) and its velocity on the horizontal (𝑣𝑥) and vertical (𝑣𝑦) axes. 

Table 3. Observasi environment oleh Agent 

Vehicle 𝒙 𝒚 𝒗𝒙 𝒗𝒚 

ego-vehicle 0.05 0.04 0.75 0 

vehicle 1 -0.15 0.00 -0.15 0 

vehicle 2 0.08 0.04 -0.075 0 

 
In Table 3, the ego vehicle has an 𝑥 position of 0.05 and a 𝑦 position of 0.04, indicating 

its location relative to its surroundings. Its horizontal velocity (𝑣𝑥) is 0.75, indicating that the 

vehicle is moving to the right at a reasonably high-speed while 𝑣𝑦 is zero, indicating no move-

ment in the vertical axis. Vehicle 1 has an 𝑥 position of -0.15, meaning it is to the left of the 

ego vehicle. Its velocities (𝑣𝑥) and 𝑣𝑦) are zero, indicating that the vehicle is stationary at that 

location. The vehicle is to the right of the ego vehicle with an 𝑥 position of 0.08 and a 𝑦 
position of 0.04 but is moving slowly to the left with a horizontal velocity 𝑣𝑥) of -0.075. Just 

like the ego vehicle, there is no vertical movement in this vehicle (𝑣𝑦= 0). The actions that 

can be taken by the agent in the scenario are a set of five actions designed in set 𝐴, shown in 
Equation (1). 

𝐴 =  

[
 
 
 
 
lane_left

idle
lane_right

faster
slower ]

 
 
 
 

 (1) 

In action set A, the agent can take actions to turn left, maintain a fixed position, turn right, 
increase speed, and decrease speed according to the observations made. The rewards applied 
to the agent in the environment are designed as follows: 
• Agent receives a reward of 0.1 if it takes the right lane 
• Agent receives a reward of 0.3 if it increases its speed 
• Agent receives a reward of 0.1 if it takes the left lane 
• Agent receives a reward if it is only at the speed limit [20, max(agent speed) ] in m/s 
• Agent receives a reward of -1 if it experiences a collision 
This reward scheme encourages agents to perform maneuvers and arrive at their destination 
as quickly as possible while avoiding collisions. 

3.4. Evaluation Metrics 

This study uses two evaluation metrics to assess safety issues (success rate and total re-
ward) concerning the DQN agent model. The success rate calculates the percentage of epi-
sodes where the ego vehicle (agent) successfully accomplishes its goal (without collision) 
within a specified duration. This also considers the functionality of the autonomous vehicle 
agent, which evaluates the DQN model's ability to learn behavior and complete tasks. In this 
test, the autonomous driving scenario in the environment is set with a time limit representing 
the maximum training duration per episode. The success rate can be calculated by taking the 
duration the agent survives in each episode and the duration of the environment in each 
episode used for training, as shown in Equation (2). 

Success_rate(%) =  
survived_duration

environment_duration
×  100 (2) 

The total reward is a standard metric used to evaluate the performance of the ego vehicle over 
several episodes, which is calculated using Equation (3). 
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Total Reward =  ∑ 𝑟𝑖

𝑛

𝑖=1

 (3) 

Where 𝑟𝑖 is the reward received at the 𝑖-th step, and 𝑛 n is the total number of steps in the 
testing episode. 

In this testing, the total reward received by the ego vehicle is collected after taking several 
actions within the environment in each episode. As the ego vehicle improves its learning, the 
reward value earned by the ego vehicle will increase in subsequent episodes. 

3.5 Experimental procedure  

This study was conducted by testing the performance of the DRL DQN model using 
three different test scenarios. The first scenario trains the ego vehicle with safety mode, the 
second scenario trains the ego vehicle with normal mode, the last scenario trains the ego 
vehicle with aggressive mode. All scenarios will be trained by the DQN model with the same 
architectural settings as in Table 4 below. 

Table 4. Training configuration 

Hyperparameter Values 

policy ‘MlpPolicy’ 

learning_rate 5e-4 

buffer_size 15000 

learning_starts 100 

batch_size 32 

discount_factor 0.8 

 
The training will be run for 12000 step training episodes, then the ego vehicles testing 

section will be tested with 20 episodes. After testing is carried out, the results of each reward 
and the duration of the agent's survival in the environment in each episode will be stored as 
a value to calculate the success rate and total reward. 

4. Results and Discussion 

In this section, the results of the experiment will be discussed and evaluated. Testing is 
done by placing the agent in a simulation environment. This section consists of three main 
parts, namely the training phase, the testing phase, and the discussion. 

4.1. Training Phase Evaluation Result 

The training results of the DQN model for 12000 step episodes with various driving 
modes. Figure 3 shows the model performance in three scenarios: Safe, Normal, and Aggres-
sive. The model performance is seen from the reward value (ep_rew_mean) and the agent 
survival duration (ep_len_mean) during training. The ep_rew_mean value shows how effec-
tively the agent makes decisions to reach the goal safely and efficiently. A higher reward indi-
cates that the agent has learned a better policy and is more efficient in completing its tasks. 
The ep_len_mean value reflects the agent's ability to survive longer in the simulated environ-
ment. If the episode duration is longer, the agent successfully avoids obstacles and survives 
longer in the simulated driving situation. 

In the safe scenario, ep_len_mean (Figure 3a) consistently increases after a brief dip at 
around 2,000 steps. After this exploration phase, the agent shows stability and consistency 
and persists longer in each episode. The persisting duration increases significantly after 4,000 
steps, indicating that the agent’s policy is starting to perform optimally. This increase contin-
ues until the end of training at 12,000 steps, with the episode duration almost reaching its 
maximum. In contrast, ep_rew_mean (Figure 3b) also follows a similar pattern, with a steady 
increase after the initial exploration phase. The agent’s reward increases significantly to nearly 
32 points at 12,000 steps. This indicates that the agent successfully maximizes its reward 
through better decisions in a safe scenario. Thus, both ep_len_mean and ep_rew_mean are 
consistent in showing a gradual increase in agent performance after the initial exploration 
period. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Showcase of training episodes using DQN in (a) ep_len_mean of safe scenario; (b) 
ep_rew_mean of safe scenario; (c) ep_len_mean of normal scenario; (d) ep_rew_mean of normal 

scenario; (e) ep_len_mean of aggressive scenario; and (f) ep_rew_mean of aggressive scenario. 

In the normal scenario, ep_len_mean (Figure 3c) shows a more stable improvement 
pattern than the safe scenario. Although the agent also experiences a similar initial perfor-
mance drop at around 2,000 steps, the survival time quickly increases consistently after 4,000 
steps. The episode duration approaches 30 seconds towards the end of training, indicating 
that the agent is starting to be able to survive longer in a more dynamic environment. Mean-
while, ep_rew_mean (Figure 3d) shows a more volatile pattern. The reward increases after a 
fairly sharp initial drop at around 2,000 steps, but the increase is not as rapid as ep_len_mean. 
Although the reward increases with more episodes, it peaks under the safe scenario, with the 
reward approaching 28 points at the end of training. This suggests that although the agent 
can survive longer, it has not yet fully maximized its reward in this scenario, indicating poten-
tial for further optimization. 

In the aggressive scenario, ep_len_mean (Figure 3e) shows the greatest challenge among 
the three scenarios. The agent’s survival time drops significantly in the early stages, around 
1,000 training steps, indicating that the agent struggles to find an effective policy in this sce-
nario. However, after around 3,000 steps, the agent shows gradual improvement, although 
the improvement is slower than in the other scenarios. Up to 12,000 steps, the survival time 
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remains around 30 seconds, indicating that despite the improvement, the agent still struggles 
to maintain its performance consistently. In Figure 3f, ep_rew_mean also reflects the same 
difficulty, with the reward decreasing sharply in the early stages of training. The reward only 
starts to increase significantly after 3,000 steps, but the increase is more moderate than the 
safe and normal scenarios. The agent’s reward in the aggressive scenario reaches around 26 
points at the end of training, which is the lowest value compared to the other scenarios. This 
indicates that the agent still struggles to maximize its reward in more dynamic and aggressive 
driving conditions. 

Overall, there is consistency between the improvements in ep_len_mean and 
ep_rew_mean in the safe and normal scenarios, where both metrics support each other and 
increase as training progresses. However, despite improvements in both metrics in the ag-
gressive scenario, the reward improvement seems to lag behind the survival duration, indicat-
ing that the agent is not fully optimized in exploiting the conditions of the more aggressive 
scenario. This indicates the need for further improvements to the policy algorithm to address 
the challenges in scenarios with higher difficulty levels. 

4.2 Testing Phase Evaluation Result 

In this section, the test results of the DQN model for 20 episodes with three driving 
modes are presented in Table 5. 

Table 5. The testing performance of DQN DRL models in drive mode scenarios. 

Scenarios Metrics Results 

 Average Success rate 90.750% 

Safe Average reward 35.70 

 Average speed 21.8 m/s  or 78.4 km/h 

 Average Success rate 94.625 % 

Normal Average reward 33.42 

 Average speed 24.9 m/s or 89.6 km/h 

 Average Success rate 95.875 % 

Aggressive Average reward 31.85 

 Average speed 25.2 m/s or 90.7 km/h 

 
In the safe scenario, it can be observed that the model achieved a success rate of 90.75%. 

This figure shows that the model can run well in a safe scenario, completing the tasks or 
challenges with a fairly high success rate. The average reward obtained by the model in this 
scenario is 35.70 points. This result illustrates that the model has successfully formed an op-
timal policy during testing. 

In the normal scenario, the model is able to show better performance with a success rate 
of 94.625%. This result indicates that the model can adapt well to environmental conditions 
in normal driving mode. The average reward obtained in this scenario is 33.42 points, indi-
cating that the model is not only successful in dealing with tasks but also efficient in making 
decisions. 

In the last scenario, namely aggressive mode, the model can show its best performance 
with a success rate of 95.875%. However, despite the high success rate, the average reward 
obtained in this scenario is 31.85 points, which is lower than other scenarios. This shows that 
the model successfully completes the task, but there is room for improvement in terms of 
maximizing rewards in more dynamic and challenging driving scenarios. 

4.3 Discussion 

Based on the training evaluation (Figure 3), it can be seen that the DQN model in the 
safe scenario experienced a decline in performance at around 6000-7000 step episodes. Still, 
the reward graph slowly began to increase after 8000 step episodes until it reached the training 
limit at 12000 step episodes. If the training episode limit is increased, the performance in the 
safe scenario can likely continue to increase and obtain higher rewards. For the normal and 
aggressive scenarios, the reward graphs began to stabilize at around 7000-12000 step episodes, 
indicating that the agent has achieved maximum performance. However, if the episode limit 
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is increased, the reward in the normal scenario is estimated to remain at around 33.42 points, 
while in the aggressive scenario, the reward will be at around 31.85 points, indicating that the 
model is not yet fully optimal in a more dynamic driving scenario. 

Based on the testing evaluation in Table 5, the DQN model can effectively improve 
safety performance in autonomous vehicle simulations. In the Safe scenario, the agent ob-
tained a high average reward of 35.70 points with a success rate of 90.75%, slightly lower than 
previously reported. In Normal mode, the agent performed better, with a reward of 33.42 
points and a success rate of 94.625%. Meanwhile, in the aggressive scenario, the agent ob-
tained a reward of 31.85 points, with a success rate of 95.875%. This evaluation shows that 
although the success rate increases, the rewards obtained in the aggressive scenario tend to 
be lower. This indicates that the model still faces challenges in maximizing performance in 
more challenging driving scenarios. With the high success rate, it can be concluded that the 
policy is running well, but further optimization is needed to maximize rewards, especially in 
more dynamic driving conditions. 

5. Comparison 

In comparing test results, we have adjusted the environment by using the average reward 
metric and setting the vehicle density level to 20 vehicles/frame, according to the first test 
scenario in previous research [27]. After adjusting the environment, we compared the test 
results in research [27] with an average reward of 35.61 points and a success rate of 90.075%. 
Compared to the test results in the Safe scenario, the average reward we obtained was slightly 
higher, which was 35.70 points, with almost the same success rate of 90.75%. Although this 
increase in reward is relatively small, it shows that our model can perform slightly better than 
previous research. In the Normal and Aggressive scenarios, the average reward obtained tends 
to be lower than Safe mode, with a value of 33.42 points for Normal and 31.85 points for 
Aggressive. However, the success rate for both scenarios is much higher, 94.625% for Normal 
and 95.875% for Aggressive, compared to the success rate in the study[27]. This indicates that 
our model is more successful in facing more dynamic environmental challenges, although the 
rewards obtained are slightly lower.  

Overall, the test results show that our DQN model is able to outperform previous stud-
ies in terms of success rate, especially in the Normal and Aggressive scenarios. Although the 
average reward is lower, the model's overall performance in avoiding failures and completing 
driving tasks effectively increases. Adjustments made to the environment, such as speed 
range, reward settings, and several other configurations, positively affect DQN performance, 
especially in more dynamic scenarios. These results indicate that there is still potential for 
further improvement, especially in maximizing rewards in more complex traffic conditions, 
while maintaining a high success rate stability. 

6. Conclusions 

This study has successfully developed the best settings for the DQN model) in three 
different driving modes: safe, normal, and aggressive. With these variations in driving modes, 
A is able to adjust its performance based on user needs in different situations. The model 
performance is evaluated by measuring the success rate and total reward obtained by the 
DQN agent. 

The experimental results show that the proposed DQN model is able to achieve very 
good performance in the safe scenario, with a success rate reaching 91.375%. Although the 
average reward obtained is slightly lower than the safe scenario in the normal and aggressive 
scenarios, the success rate has increased significantly to 94.625% and 95.875%, respectively. 
This indicates that DQN can adapt well to meet more dynamic and challenging driving needs, 
although there is room for further improvement in maximizing rewards in both scenarios. 

However, this study has several limitations. First, although the DQN model has been 
tested on various driving modes, the test was only conducted in one type of environment 
(highway-env), which may limit the generalization of the results to other driving environ-
ments. Second, although the success rate is quite high, the reward obtained in the aggressive 
scenario is still relatively low, indicating that the DQN agent policy is not fully optimal in 
more complex scenarios. For further research, development can focus on improving the 
DQN algorithm in dealing with denser and more diverse traffic conditions and testing the 
model in other more complex simulation environments. This research also opens up 
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opportunities to explore the integration of DQN with other reinforcement learning models 
to improve the adaptability and efficiency of AVs in various driving needs. 
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