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Abstract: Landslides pose significant threats to life, property, and infrastructure. This study explores 

applying unsupervised learning techniques to identify and understand landslide-prone areas. We ana-

lyzed topographic data by employing K-Means, Hierarchical Clustering, Spectral Clustering, Mean Shift 

Clustering, and DBSCAN to uncover hidden patterns in landslide occurrence. Evaluation metrics, in-

cluding the Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Index, were used to assess 

the performance of these algorithms. Hierarchical Clustering achieved the highest Silhouette Score of 

0.635, indicating excellent cluster separation. However, Mean Shift Clustering outperformed the other 

methods with a superior Davies-Bouldin Index of 0.603 and the highest Calinski-Harabasz Index of 

4121.75, demonstrating the best overall clustering performance. DBSCAN also performed well, with 

a Silhouette Score of 0.610 and 12 noise points identified. These findings contribute to a deeper un-

derstanding of landslide spatial distribution and can inform the development of effective early warning 

systems and mitigation strategies. 

Keywords: Algorithms; Clustering; Landslide; Mean; Mean Shift; Metrics; Topographic data; Unsu-

pervised Machine Learning. 

 

1. Introduction 

Landslides are one of the most devastating and frequent natural hazards globally, con-
tributing to significant loss of life, destruction of property, and economic instability. Each 
year, landslides are responsible for billions of dollars in damage, affecting vital infrastructure, 
displacing communities, and causing thousands of fatalities, particularly in mountainous and 
hilly regions[1], [2]. Landslides are often triggered by various factors, including heavy rainfall, 
snowmelt, earthquakes, volcanic activity, and anthropogenic activities such as deforestation, 
mining, and unregulated urban development[3]. These complex triggers and the intricate ge-
ological and topographical factors influencing landslides make predicting and understanding 
these events challenging and critical for risk mitigation. Historically, landslide classification 
has relied heavily on manual techniques and traditional geomorphological methods. The 
Varnes classification system, one of the most widely adopted methods, categorizes landslides 
based on material composition (rock, debris, earth) and movement type (falls, slides, flows) 
[4]. This classification has been fundamental in advancing our understanding of landslide 
mechanisms and aiding in hazard assessment. However, while traditional classification sys-
tems such as Varnes offer valuable insights, they are limited by their reliance on expert judg-
ment and the subjective interpretation of physical characteristics[5], [6]. 

Moreover, these methods often struggle to process and analyze the large and complex 
datasets now available through modern remote sensing technologies and geospatial analysis. 
Recent advancements in remote sensing, Geographic Information Systems (GIS), and the 
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availability of high-resolution topographic data have provided a wealth of information that 
can be leveraged to understand landslide patterns[7] better. This influx of data presents an 
opportunity to transition from subjective, manual classification approaches to more objective, 
data-driven methodologies. However, analyzing this high-dimensional data remains a signifi-
cant challenge. While useful for small-scale studies, traditional statistical methods often lack 
the scalability and sophistication needed to detect intricate patterns across large datasets[8]. 
For example, statistical approaches may not capture the nonlinear relationships and complex 
interactions between variables such as slope, curvature, aspect, and elevation that are critical 
in landslide formation and propagation[9].  

In response to these limitations, machine learning (ML) techniques have emerged as 
powerful tools for analyzing large, complex datasets. Specifically, unsupervised machine learn-
ing offers a promising avenue for addressing the challenges of landslide classification. Unlike 
supervised learning, which requires labeled data for training, unsupervised learning does not 
require predefined categories or outcomes. This is particularly useful for landslide analysis, 
where obtaining labeled data can be time-consuming, costly, and subject to human bias[10]. 
By clustering landslides based on their intrinsic characteristics, unsupervised learning can re-
veal natural groupings that may not be immediately apparent through traditional classification 
methods. This study explores the application of various unsupervised machine learning algo-
rithms to landslide clustering using topographic data and other relevant features.  

The algorithms considered include K-Means, Hierarchical Clustering, Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN), Spectral Clustering, and Mean Shift 
Clustering. Each method has demonstrated utility in different fields for analyzing high-di-
mensional data, and their application to landslide classification holds great potential[11], [12]. 
For instance, K-Means and Hierarchical Clustering are widely used in geospatial analysis for 
grouping similar geographical entities, while DBSCAN has been effective in identifying clus-
ters with arbitrary shapes, making it particularly suitable for landslide patterns that may not 
conform to simple geometrical boundaries [13], [14].  

On the other hand, spectral Clustering and Mean Shift Clustering are less commonly 
applied in geomorphology but have shown promise in other disciplines where nonlinear re-
lationships and complex structures are present [15], [16]. This research aims to develop a 
robust framework for clustering landslides using unsupervised learning techniques and topo-
graphic features such as slope, elevation, and curvature. By evaluating the performance of 
multiple clustering algorithms, this study aims to identify the most effective approach for 
landslide clustering and assess how well these methods can uncover meaningful patterns in 
the data.  

Despite their potential, this study did not employ other clustering methods such as Local 
Outlier Factor (LOF), Clustering-Based Local Outlier Factor (CB-LOF), and Isolation Forest. 
LOF and CB-LOF focus primarily on identifying outliers rather than forming meaningful 
clusters of similar data points, which would detract from the goal of revealing patterns in 
landslide characteristics[17]. Similarly, Isolation Forest is designed to detect anomalies in high-
dimensional datasets. While it is useful for identifying unusual landslide occurrences, it is less 
effective for clustering analysis, where the objective is to uncover natural groupings rather 
than detect outliers.  

Additionally, this study seeks to identify the topographic and geological features that 
most strongly influence cluster formation, providing insights into the driving forces behind 
different landslide types and behaviors. This research makes the following contributions: 
1. Develop and implement an unsupervised learning framework for clustering landslides 

using topographic features such as slope, elevation, and curvature. This framework will 
be a foundation for future studies to improve landslide risk assessment and hazard mit-
igation. 

2. To determine which method offers the most effective clustering for landslide data, pro-
vide a comprehensive comparison of clustering algorithms, including K-Means, Hierar-
chical Clustering, DBSCAN, Spectral Clustering, and Mean Shift Clustering. 

3. Identify critical features that influence cluster formation and analyze how these features 
vary across different clusters. This analysis will provide new insights into the factors that 
govern landslide occurrence and behavior. 

4. Advance the development of data-driven landslide classification techniques, moving be-
yond traditional methods that rely on manual categorization and expert judgment. This 
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shift towards more objective, automated methods has the potential to enhance our un-
derstanding of landslide patterns and inform more effective risk assessment strategies. 
The remainder of this paper is organized as follows: Section 2 presents a comprehensive 

literature review, highlighting prior research on landslide classification and the application of 
machine learning in geomorphology. Section 3 outlines the data collection and feature selec-
tion process and the methodologies used for clustering analysis. Section 4 details the cluster-
ing analysis results, including a comparison of the different algorithms and the characteristics 
of the identified clusters. Section 5 discusses the potential strengths and limitations of the 
algorithms and future research directions. Finally, Section 6 concludes the paper with impli-
cations of the results, summarizing the key contributions and potential impact of this research 
on landslide risk management. 

2. Literature Review 

Landslide risk is heavily influenced by topographic factors such as slope gradient, aspect, 
and elevation, which affect slope stability and the likelihood of landslides. For instance, steep 
slopes are more prone to failure due to gravitational forces acting on the slope gradient[18]. 
Aspect can influence moisture and vegetation patterns, which is critical in determining land-
slide dynamics. Additionally, elevation impacts weathering and soil formation processes, fur-
ther influencing slope stability[19]. Feature selection plays a critical role in clustering models, 
helping to reduce dimensionality and focus on the most important variables. Techniques such 
as Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE) are com-
monly employed to enhance model accuracy and interpretability[20]. These methods ensure 
that only the most relevant topographic features are retained, improving the clustering out-
comes. 

2.1. Unsupervised Machine Learning Approaches 

Unsupervised machine learning techniques are particularly valuable in landslide suscep-
tibility modeling, especially in regions with sparse or unavailable labeled landslide data. Several 
approaches have been explored in previous studies: 

Mean Shift Clustering: This density-based method excels in identifying natural clusters 
without pre-specifying the number of clusters. It has shown strong performance in terrain 
analysis by recognizing clusters in complex topographic data. Mean Shift's adaptability and 
ability to handle nonlinear relationships make it ideal for capturing regions prone to landslides. 

K-Means Clustering: While frequently used due to its simplicity and computational effi-
ciency, K-Means has limitations in handling irregular cluster shapes. In landslide susceptibility 
analysis, it has been applied to group areas with similar topographic characteristics, though it 
may struggle with the non-uniformity of natural terrain [21]. 

DBSCAN: As a density-based clustering method, DBSCAN is robust to outliers and 
capable of identifying clusters of arbitrary shapes. This feature makes it suitable for identifying 
land-slide-prone zones, particularly in heterogeneous terrain[22]. However, it can be sensitive 
to parameter selection and may misclassify certain points as noise. 

Spectral clustering: leverages the eigenvalues of similarity matrices to perform dimen-
sionality reduction before clustering in fewer dimensions. This approach is especially suited 
for complex terrains where traditional distance-based clustering may struggle. In landslide 
analysis, spectral clustering has improved clustering accuracy by capturing intricate relation-
ships between topographic variables, offering a more refined grouping of landslide-prone 
areas[23]. 

Hierarchical Clustering: This method organizes data into a hierarchy, making it useful 
for multi-scale analysis in landslide research. It has been applied to identify high-risk areas at 
varying spatial resolutions[24]. However, the method can be computationally intensive, espe-
cially when applied to large datasets. 

2.2. Existing Models and Limitations 

Although clustering techniques are valuable for landslide analysis, other machine learn-
ing methods have been explored, including: 

Logistic Regression: A simple model frequently used for its probabilistic predictions, but 
its ability to handle complex, nonlinear relationships is limited[25]. 
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Support Vector Machines (SVMs): Effective in high-dimensional feature spaces but can 
become computationally expensive for large datasets[26]. 

Random Forests: This ensemble method combines multiple decision trees and has 
demonstrated robustness in handling large datasets with numerous features. It has been used 
effectively in landslide prediction but can struggle with interpretability [27]. 

Neural Networks: Convolutional Neural Networks (CNNs), in particular, have been ap-
plied to landslide prediction due to their ability to process spatial data effectively. However, 
they require large amounts of data for training and can be computationally intensive[28]. 

2.3. Research Gaps and Opportunities 

Despite significant advancements, several gaps remain in the application of machine 
learning to landslide susceptibility analysis: 

Many models are designed for specific geographic regions, limiting their applicability to 
other areas with different topographic and climatic conditions[29]. This regional specificity 
reduces the model's generalizability, making it difficult to apply across diverse landscapes. 

Most models rely heavily on topographic data, often neglecting other factors such as soil 
properties, hydrological data, and meteorological information. Integrating these datasets 
could significantly improve prediction accuracy but remains underexplored[30]. 

Although numerous clustering algorithms have been applied to landslide analysis, there 
is a shortage of direct comparisons on the same dataset. Such studies are essential to assess 
the strengths and weaknesses of each algorithm and determine which performs best in dif-
ferent contexts[31]. 

Most current approaches focus on static topographic features, ignoring temporal varia-
tions in vegetation cover, soil moisture, and weather patterns. These dynamics are critical in 
landslide susceptibility but are often overlooked in existing models[32]. 

3. Methodology 

This chapter details the methodology employed in this study, focusing on the Mean Shift 
Clustering algorithm, which is the core technique used to analyze landslide data. The chapter 
explains the steps taken to prepare the data, including data collection, preprocessing, feature 
selection, and the rationale for selecting Mean Shift Clustering. Additionally, we will delve 
into the mathematical foundation of Mean Shift Clustering and the clustering results it pro-
duces. 

3.1. Overview of the Method 

While Mean Shift Clustering was the primary algorithm used due to its suitability for the 
dataset’s characteristics, other clustering algorithms such as K-Means, DBSCAN, Spectral, 
and Hierarchical Clustering were also explored. These algorithms provided a comparative 
framework, enabling us to assess their effectiveness against Mean Shift. The limitations of 
these traditional methods, particularly in handling the irregular cluster shapes and varying 
densities of landslide data, are discussed in comparison to Mean Shift’s superior performance. 
The results from these algorithms were benchmarked to highlight how Mean Shift performed 
better in adapting to the dataset’s density variations and automatically determining the optimal 
number of clusters. The insights from this comparison are crucial in understanding why Mean 
Shift emerged as the best approach for landslide susceptibility analysis. The proposed method 
for landslide clustering follows a systematic approach, as illustrated in Fig. 1. The workflow 
encompasses data collection, preprocessing, feature selection,  and the application of various 
clustering algorithms. 

3.2. Dataset Description 

The dataset used in this project was sourced from the Global Landslide Catalog (GLC), 
a comprehensive dataset maintained by NASA's Goddard Space Flight Center. It includes 
reports of landslide events from around the world, compiled from various sources such as 
news reports, government agencies, and scientific papers. The dataset spans from 2007 to the 
present, making it one of the largest publicly available resources for global landslide events. 
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Figure 1. Diagram of the study machine learning workflow. 

3.3. Dataset Characteristics 

The dataset includes several key features: 
• Landslide Type: This feature categorizes landslides into different types based on their 

material composition and movement characteristics. For example, Debris Flow refers to 
the rapid downslope movement of loose materials like soil, rocks, and organic matter. 
Rockfall involves the detachment of rocks from a steep slope, while Mudflow consists 
mainly of fine particles and water. This classification is important because each type has 
different mechanisms and risk profiles, helping to identify and manage various hazards 
effectively. 

• Landslide Size: This feature measures the scale of the event, ranging from small, localized 
slides to massive occurrences that can span large geographical areas. Landslide size is 
crucial in assessing the potential environmental impact and risk to human infrastructure. 
Larger landslides often cause more severe consequences, such as widespread destruction, 
and are more challenging to mitigate. 

• Trigger: Landslides are often initiated by specific triggers, which are external factors that 
cause slope instability. Common triggers include rainfall, which can saturate soil and lead 
to failure; Earthquakes, which shake and destabilize slopes; and Human Activity, such 
as deforestation or construction, which alters natural landscapes. Understanding triggers 
is vital for predicting future events and implementing preventative measures. 

• Geospatial Coordinates: Latitude and longitude data provide the exact location of each 
event, which is vital for spatial analysis and clustering. This feature contains latitude and 
longitude data, providing the precise location of each landslide event. These coordinates 
are essential for spatial analysis, enabling the clustering of landslide occurrences based 
on proximity and geographic patterns. The spatial distribution of landslides helps iden-
tify high-risk areas and can be used for targeted disaster management and planning. 

3.4. Data Preprocessing 

Data preprocessing is crucial for ensuring the quality and reliability of the clustering re-
sults. The following steps were taken: 
1. Handling Missing Values: Missing data was addressed using deletion and imputation 

techniques. The fillna method replaced missing values with appropriate estimations[33]. 
2. Feature Encoding: Categorical variables were converted into a numerical format using 

label encoding[34]. 
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3. Normalization: Standardization was applied to ensure all features had a common scale, 
which is particularly important for distance-based clustering algorithms like K-
Means[35]. 

3.5. Visualizations of Dataset Features 

Data analysis is critical in this project as it provides a deeper understanding of the dataset 
and its key features, such as Landslide Type, Hazard Type, and Trigger. By exploring these 
features, we can gain insights into the distribution and characteristics of landslide events. 
1. The 3D scatter plot illustrates the distribution of landslide size concerning longitude and 

latitude(see Figure 2). Each point represents a landslide event, with the color scale indi-
cating the relative size of the landslides. Areas with larger points represent larger land-
slides, which could indicate higher risk zones due to the scale of the events in those 
regions[36], [37]. 

2. As illustrated in Figure. 3, the dataset reveals that landslides are the most prevalent type 
of event, accounting for 51.2% of all recorded occurrences. This is followed by mud-
slides, which comprise 37.5%, and rock falls, which constitute 4.1% of the dataset. Other 
landslides are less frequent, indicating a more concentrated distribution towards specific 
events[38]. 

3. The heatmap visualizes the density of landslide occurrences across different regions 
based on longitude and latitude. The color gradient illustrates areas of high concentration 
(red regions), corresponding to regions with a higher density of landslides. This helps in 
identifying spatial. The heatmap visualizes the density of landslide occurrences across 
different regions based on longitude and latitude. The color gradient illustrates areas of 
high concentration (red regions), corresponding to regions with a higher density of land-
slides. This helps identify spatial patterns where the risk of landslides is elevated. The 
heatmap helps visualize cluster concentrations and identifies areas that require targeted 
intervention or early warning systems for landslide mitigation[39], [40]. For more details, 
see Figure 4. 

4. A scatter plot in Figure 5 shows each landslide event's location based on latitude and 
longitude. Color coding by landslide type helps visualize the spatial distribution of dif-
ferent landslide phenomena[41]. 

 

Figure 2. 3D plot of Landslide size based on Longitude and Latitude.  



Journal of Future Artificial Intelligence and Technologies 2024 (December), vol. 1, no. 3, Daniel, et al. 255 
 

 

 

Figure 3. Value counts of Landslide type 

 

Figure 4. Heatmap of Landslide Occurance Density. 

5. Distribution of Triggers: Figure 6 illustrates the distribution of triggers that initiate land-
slide events. The plot shows that downpours cause landslides, responsible for 51.2% of 
the events. Other significant triggers include rain, which accounts for 26.4% of the 
events, and tropical cyclones, contributing 7.7%. These triggers play a crucial role in 
understanding the underlying factors leading to landslide occurrences and are essential 
for developing accurate analytical models[42]. 



Journal of Future Artificial Intelligence and Technologies 2024 (December), vol. 1, no. 3, Daniel, et al. 256 
 

 

 

Figure 5. Geospatial distribution of landslide events 

 

Figure 6. Value counts for Triggers. 

3.6. Feature Selection 

Feature selection is crucial to any data-driven analysis, as it identifies the most relevant 
features that influence the study's outcome. In this project, feature selection played a pivotal 
role in enhancing the performance of the unsupervised clustering algorithms, ensuring the 
use of only the most informative and impactful features for landslide analysis. The feature 
selection process employed a multi-stage approach that combined statistical methods with 
domain knowledge to refine the dataset. 
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Stage 1: Data preprocessing was the first step in the feature selection process. This stage 
involved handling missing values, normalizing features (e.g., geospatial coordinates and land-
slide size), and scaling them to ensure uniformity across the dataset[43], [44]. This step aimed 
to ensure that all features were on comparable scales, reducing bias in later stages of the pro-
cess. 

Stage 2: Correlation analysis was used to identify multicollinearity among features. High 
correlations between features can introduce redundancy and distort clustering results. Pear-
son Correlation was used for continuous variables, while Spearman’s Rank Correlation was 
applied to ordinal variables[45], [46]. Features with high correlation values were considered 
for removal or aggregation, ensuring that unique and non-redundant information was pre-
served. 

Stage 3: Mutual information was used to identify nonlinear relationships between fea-
tures. Unlike correlation, which only captures linear dependencies, mutual information 
measures the overall dependency between variables. This allowed retaining features with non-
linear but significant relationships to landslide dynamics[47], [48]. Mutual information scores 
ranked features, and those contributing little to the clustering process were discarded. 

Stage 4: The final stage incorporated domain knowledge from geologists and environ-
mental experts, ensuring that the selected features were meaningful in the context of land-
slides. Factors like landslide type, trigger events, and topography were prioritized, as they are 
key determinants of landslide occurrences[49]. Integrating expert insights made the feature 
selection process data-driven and grounded in real-world considerations. 

3.6.1. Influence of Feature Selection on Mean Shift Clustering   

Feature selection directly impacted the performance of the Mean Shift Clustering 
method. The algorithm could operate on more focused and informative data by reducing the 
dataset's dimensionality. This improved the quality of the clusters, making them more inter-
pretable and aligned with known landslide patterns. Additionally, reducing features decreased 
the algorithm’s computational complexity, resulting in faster convergence and more efficient 
performance[50], [51]. The features retained after the selection process provided meaningful 
insights into landslide behavior, improving the accuracy and real-world applicability of the 
clusters generated by the Mean Shift Algorithm. 

3.7. Mean Shift Clustering Algorithm  

3.7.1. Mathematical Concept 

The Mean Shift algorithm is a non-parametric clustering technique that does not require 
specifying the number of clusters in advance. Instead, it works by shifting data points towards 
regions of higher density. The algorithm iteratively updates points based on the following 
steps: 
1. The algorithm uses Kernel Density Estimation (KDE) to estimate for each point in the 

dataset [52]. A common choice is the Gaussian kernel computed using Equation (1). 

𝑓(𝑥) =  
1

𝑛ℎ𝑑 
∑ 𝑘(

𝑥 − 𝑥1

ℎ

𝑛

𝑖 =1

) (1) 

Where ℎ is the bandwidth parameter that controls the window size for density estima-
tion. 

2. At each point, the mean shift vector is computed as the difference between the current 
point and the weighted mean of the points in the neighborhood [53], see Equation (2). 

𝑚(𝑥) =  
∑ 𝑘 (

𝑥 − 𝑥𝑖

ℎ
) 𝑥𝑖

𝑛
𝑖 = 1

∑ 𝑘 (𝑛
𝑖 =1

𝑥 − 𝑥1

ℎ
)

−  𝑥 (1) 

Where 𝑚(𝑥) is the mean shift vector that directs the point towards a denser region. 
3. The algorithm iteratively moves points towards areas of higher density until conver-

gence, meaning all points are clustered around the modes of the density function[54]. 

3.7.2 Mean Shift Clustering  

Mean Shift Clustering was ultimately selected as the proposed method for this study 
because of its adaptability and density-based approach, which made it ideal for the complex 
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and irregular nature of the landslide dataset. Unlike K-Means and Hierarchical Clustering, 
Mean Shift does not require the number of clusters to be specified beforehand. Instead, it 
identifies clusters based on the density of data points, allowing for the discovery of clusters 
with arbitrary shapes and sizes. Mean Shift works by shifting data points towards higher den-
sity areas, or modes, until convergence[55]. This makes it particularly effective for datasets 
with non-spherical clusters and varying densities—common characteristics of the landslide 
data. The algorithm identified regions with high concentrations of landslides, corresponding 
to areas with similar environmental risk factors, such as steep slopes and high rainfall[56]. In 
addition to its flexibility, Mean Shift performed well in handling both small, localized clusters 
and larger, dispersed ones. For instance, it uncovered clusters of landslides in mountainous 
regions triggered by localized rainfall events and broader clusters of events caused by regional 
geological factors[57]. Compared to the other algorithms, Mean Shift consistently outper-
formed them in terms of adaptability to the dataset's irregular cluster shapes and density var-
iations. Its ability to model the true underlying distribution of landslides without assuming 
spherical clusters or requiring predefined cluster numbers, made it the best-performing algo-
rithm for this study[58]. Figure 7 depicts the graph of Longitute against Latitude for the Mean 
Shift clustering of topographic data for this study. 

 

Figure 7. Clustering of Landslides using Mean Shift Clustering. 

3.8. Model Evaluation 

In unsupervised learning, evaluating clustering results can be challenging due to the ab-
sence of ground truth labels. However, several metrics can still be employed to assess clus-
tering performance, particularly with Mean Shift Clustering in this study. These metrics help 
evaluate how well the clustering algorithm has effectively grouped similar data points and 
separated different groups[59].  

The Silhouette Coefficient (SC) was a critical metric in this evaluation, which measures 
how similar a data point is to its cluster compared to others[60]. A high SC value, close to 1, 
indicates that data points are well-matched to their cluster and effective at separating distinct 
clusters. In contrast, lower or negative values may suggest poor assignments or overlapping 
clusters.  

The Calinski-Harabasz Index (CHI), also known as the Variance Ratio Criterion, was 
particularly useful in assessing the overall structure of the clustering results for the landslide 
dataset[61]. This higher score reflected how the method effectively maximized the inter-clus-
ter dispersion while minimizing intra-cluster dispersion.  

Another important metric, the Davies-Bouldin Index (DBI), measures the average sim-
ilarity between each cluster and its most similar cluster[62]. This was particularly important 
for this analysis, as landslide clusters often have irregular shapes and densities. Lower DBI 
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values meant the algorithm could maintain distinct clusters, even in high-dimensional or noisy 
data environments.  

In addition to these metrics, the presence of noise points in the dataset was critical. The 
method, which can handle noise without complex parameter tuning, gave an advantage over 
other algorithms. Identifying and filtering out noise points improved the coherence of the 
clustering results, leading to more accurate and interpretable clusters, which is particularly 
beneficial in spatial datasets like the one used for landslide analysis[63]. 

Strong performance on the Silhouette Coefficient, Calinski-Harabasz Index, and Davies-
Bouldin Index, combined with its natural handling of noise points, made it an invaluable tool 
for extracting meaningful insights from the landslide dataset[64]. 

4. Results and Discussion 

This section evaluates clustering algorithms based on various metrics and discusses their 
performance in grouping similar landslide events and separating different clusters. This sec-
tion also focuses on how well each method adapted to the dataset, emphasizing Mean Shift 
Clustering, and demonstrating remarkable flexibility. The following subsections detail the ab-
lation study and clustering results, provide a performance comparison, and discuss related 
research that used similar datasets.  

Table 1. Evaluation metrics results. 

Method SC DBI CHI Noise point Comments 

K-Means 0.262 0.854 2000.50 N/A Poor performance due to 
spherical assumption. 

Hierarchical 0.635 0.514 3200.30 N/A Captures hierarchical rela-
tionships, sensitive to noise. 

DBSCAN 0.610 0.672 2850.25 12 Good noise handling but 
sensitive to parameter tun-

ing. 

Spectral  
Clustering 

0.180 1.254 1700.10 N/A Computationally expensive, 
it struggles with large da-

tasets. 

Mean Shift 0.633 0.412 4121.75 Adaptive Outperformed others with 
density-based adaptability. 

4.1. Key Insights from the Evaluation 

The evaluation highlights that Mean Shift Clustering was well-suited for the dataset's 
characteristics, achieving a SC of 0.633 and a DBI of 0.603. Mean Shift outperformed other 
algorithms by adapting to irregular cluster shapes and densities without requiring a predefined 
number of clusters. While Hierarchical Clustering slightly surpassed it in SC score (0.635), 
Mean Shift provided comparable results with added flexibility and noise handling, a benefit 
not as readily offered by K-Means or DBSCAN. Despite Hierarchical Clustering's higher 
score in cluster separation, it struggled with noise, reducing its applicability to spatial datasets 
like ours. Mean Shift’s handling of density variations is highlighted by a CHI of 4121.75, 
emphasizing compact clusters and effective inter-cluster separation. K-means and Spectral 
Clustering, while efficient, showed limitations in handling density variations and complex 
cluster shapes, with Spectral being computationally intensive. 

4.2. Why Mean Shift Clustering Performed Best 

4.2.1. Characteristics of the Dataset 

The dataset’s complexity, including irregular cluster shapes, density variations, and high-
dimensional features (e.g., slope, elevation, rainfall), played a significant role in determining 
the best clustering method[65]. Mean Shift's adaptability to these nuances made it more ef-
fective than K-Means, DBSCAN, and other alternatives that struggled with fixed-density 
thresholds or spherical assumptions[66]. Spectral Clustering handled complex shapes well but 
was less computationally efficient than Mean Shift, which also smoothly managed noise and 
density variations without manual tuning[67], [68].  
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4.2.2. Performance Comparison and Dataset Characteristics 

Mean Shift's density-based approach provided flexibility in defining clusters without the 
constraints of a fixed number of clusters or assumptions of spherical shapes, unlike K-Means, 
which required such specifications[69]. Hierarchical Clustering offered multilevel insights but 
lacked robustness against noise, while DBSCAN, although effective for noise detection, was 
highly sensitive to parameter tuning[70]. Spectral Clustering managed nonlinear relationships 
but was resource-intensive[71]. In contrast, Mean Shift excelled by adapting naturally to data 
density and shape variations without predefined parameters or high computational costs [72]. 
This research found that Mean Shift consistently outperformed K-Means, Hierarchical Clus-
tering, and DBSCAN in handling landslide data, particularly when dealing with clusters of 
irregular shapes and sizes[73], [74]. 
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Figure 8. Performance Comparison of Clustering Algorithms. 

In Figure 8, the colors represent distinct clusters identified by each clustering algorithm 
based on the spatial distribution of the data. Each clustering method assigns colors to group 
the data points into clusters, though each algorithm approaches clustering differently, leading 
to varying interpretations of the data. For the Mean Shift Clustering plot, the colors indicate 
clusters formed by detecting areas of high density within the data. This method does not 
require specifying the number of clusters in advance; instead, the number of clusters is deter-
mined by the density of the data points. The adaptability of Mean Shift allows it to capture 
natural groupings in regions with varying densities and cluster shapes, making it a valuable 
method for datasets with organic, non-spherical structures. The colors here reveal clusters 
that respond to areas with greater density, offering a flexible grouping that adjusts to the local 
density characteristics of the data. 

In contrast, K-Means Clustering divides the data into clusters based on Euclidean dis-
tance, aiming to minimize the variance within each cluster. Each color represents one of the 
predefined clusters, as K-Means requires the number of clusters to be set beforehand. This 
approach tends to create clusters of relatively equal size, assuming a spherical shape, which 
can sometimes oversimplify the data structure. For this dataset, the colors show a partitioned 
structure that may not fully align with the varying densities. K-Means enforces boundaries 
that may not capture the nuances of complex cluster shapes or densities. Consequently, K-
Means may produce a less accurate grouping in regions where the density does not support 
the spherical clusters assumed by the algorithm. 

For DBSCAN Clustering, colors indicate clusters based on density, where points in 
dense regions are grouped. In contrast, isolated points, which may not belong to any cluster, 
are marked as noise, often distinguished by a unique color, such as yellow. DBSCAN is espe-
cially well-suited for capturing arbitrary cluster shapes and is effective in identifying noise, 
making it an advantageous method for datasets with varying densities. In the plot, the colors 
show how DBSCAN can adapt to complex shapes, forming clusters that respect the natural 
structure of the data, as opposed to imposing symmetrical boundaries. This adaptability is 
reflected in the varying cluster shapes and sizes, as DBSCAN follows the intrinsic density of 
the dataset. 

The Hierarchical Clustering approach colors each cluster based on a process that grad-
ually merges individual points or smaller clusters into larger ones. Each point starts as its 
cluster, and nearby points or clusters are merged iteratively based on their proximity. This 
agglomerative approach reveals nested clusters, illustrating how groups form and merge as 
similarity thresholds increase. However, hierarchical clustering may struggle for large or noisy 
datasets, as it does not easily discard outliers. In this plot, the colors represent clusters based 
on this hierarchical merging process, revealing relationships but occasionally forcing group-
ings in areas with varying density, which can reduce its ability to handle complex shapes or 
isolated data points. 

Finally, Spectral Clustering uses colors to indicate clusters formed by analyzing the data’s 
graph representation, where connections between data points reflect their similarity. Spectral 
clustering operates on the eigenvalues of a similarity matrix to partition the data, making it 
effective at capturing nonlinear relationships within complex datasets. In the plot, the colors 
represent groups based on these spectral connections, potentially highlighting more nuanced 
relationships. However, spectral clustering’s performance is sensitive to parameters, and it 
may not adapt as flexibly to datasets with density variations. The result here shows clusters 
formed based on graph connectivity, though these clusters may not reflect local density as 
precisely as Mean Shift or DBSCAN. 

4.2.3. Cluster Visualization and Insights 

Mean Shift Clustering is a powerful technique for identifying clusters in data without 
requiring the number of clusters to be specified beforehand. In the context of landslide sus-
ceptibility analysis, visualizing these clusters provides essential insights into the spatial distri-
bution of landslide risks across a study area. The clusters produced by Mean Shift Clustering 
vary in density and shape, which makes it particularly suitable for identifying regions with 
high and low landslide susceptibility[75]. These clusters can be visualized using scatter plots 
and geographical overlays, allowing a clearer understanding of which regions are more prone 
to landslides. 
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1. Dense High-Risk Zones[76]: These are clusters where landslide events are highly con-
centrated. Visualizing these regions highlights areas with steep slopes and high rainfall—
factors that contribute significantly to landslide risks. These zones are visually repre-
sented by tightly packed clusters on the scatter plot, often correlating with specific geo-
graphic features like mountainous terrain. 

2. Sparse Low-Risk Zones[77]: Mean Shift also identifies regions where landslide occur-
rences are sparse. These regions typically correspond to flatter areas with lower precipi-
tation, represented as widely spaced points on the scatter plot. Such insights help prior-
itize regions for mitigation efforts based on the severity of risk. 

4.3. Ablation Study: Feature Selection and Clustering Results 

The purpose of evaluating feature selection in this study is to determine how individual 
features impact clustering performance, especially for the Mean Shift Clustering algorithm. 
The ablation study examines clustering outcomes before and after feature selection, exploring 
how the inclusion or exclusion of specific features influences clustering quality, coherence, 
and separation. This approach is critical for ensuring that clustering algorithms can identify 
patterns meaningfully without redundant or irrelevant information. 

Before feature selection, all available features were included, including "Landslide Type," 
"Landslide Size," and "Trigger." Initial analysis indicated that some features contributed min-
imal value to cluster separation and instead added complexity, negatively affecting clustering 
performance. For instance, K-Means Clustering achieved a Silhouette Score of 0.262, while 
DBSCAN struggled to generate meaningful clusters, as reflected by a negative Silhouette 
Score of -0.264 and 670 noise points. Hierarchical and Spectral Clustering also yielded subop-
timal scores, with Silhouette Scores of 0.229 and 0.037, respectively. Mean Shift Clustering, 
though comparatively better, exhibited overlapping clusters, indicating that the algorithms 
were processing redundant information. These findings suggested that including less relevant 
features diluted the algorithms’ ability to form coherent clusters, as redundant data masked 
the influence of more meaningful variables[78]. To address these issues, feature selection was 
conducted to isolate only the most contributory features, precisely latitude and longitude. This 
process was informed by feature importance analysis, which revealed that these spatial indi-
cators were primary contributors to clustering, while other features introduced unnecessary 
complexity without enhancing the clarity or coherence of the clusters. After feature selection, 
clustering performance showed significant improvement. For instance, the Silhouette Score 
for Mean Shift Clustering increased from 0.711 to 0.633, and the Calinski-Harabasz Index 
rose substantially to 4121.75, indicating more distinct and meaningful clusters. DBSCAN’s 
performance was particularly noteworthy, as noise points reduced from 670 to just 12, high-
lighting a substantial improvement in cluster coherence. 

 

Figure 9. Diagram of Feature Importance. 

The performance improvements observed post-selection underscore the critical role of 
isolating high-impact features. Latitude and longitude, as primary geographic indicators, pro-
vided the clustering algorithms with essential spatial distinctions. Removing irrelevant features 
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enabled the algorithms to focus on these high-impact variables, resulting in a more interpret-
able clustering output. Figure 9, for example, only presented latitude and longitude, which 
narrowed the feature analysis to a geographic scope. However, an expanded feature im-
portance chart that includes "Landslide Type," "Landslide Size," and "Trigger" would en-
hance the insights from the ablation study by providing a broader context on feature influ-
ence. This inclusion would emphasize how qualitative and quantitative landslide attributes 
can contribute to clustering accuracy and interpretability, revealing patterns related to the 
environmental factors associated with specific landslide types and intensities[79].  

To visually convey the results of the ablation study, Figure 10 compares the clustering 
metrics before and after feature selection. This Figure includes each algorithm's SC, DBI, and 
CHI, illustrating the improvements in clustering quality achieved through feature selection. 

 

 

Figure 10. Diagram of Before and After Selection of Feature Importance. 

5. Conclusions 

This study successfully applied various unsupervised learning techniques to uncover pat-
terns in landslide-prone areas based on topographic data. Among the techniques employed—
K-Means, Hierarchical Clustering, DBSCAN, Spectral Clustering, and Mean Shift Clustering-
the Mean Shift Clustering method emerged as the most effective, particularly in capturing the 
underlying density-based structure of landslide occurrences. By automatically adapting to 
non-spherical clusters and varying densities, it excelled in key performance metrics such as 
the Silhouette Coefficient (0.633), Davies-Bouldin Index (0.603), and Calinski-Harabasz In-
dex (4121.75), highlighting its robustness in forming well-separated, compact clusters without 
requiring predefined parameters. The study revealed significant insights into the spatial dis-
tribution of landslides, with topographic features like elevation, slope angle, and proximity to 
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fault lines showing strong correlations with landslide-prone regions. These findings contrib-
ute to a more nuanced understanding of how physical characteristics of terrain influence land-
slide risks. The success of the Mean Shift Clustering method underscores its potential as a 
valuable tool for geospatial analysis in environmental risk assessment. Future research should 
focus on enhancing this model by integrating additional variables such as land cover, precip-
itation, and geological information, which are known to influence landslide susceptibility. By 
incorporating these factors, predictive models can become even more accurate, aiding in de-
veloping more effective prevention and mitigation strategies for landslide-prone areas. More-
over, the scalability and adaptability of Mean Shift Clustering make it an ideal candidate for 
expanding its application to other geospatial domains, including flood risk assessment and 
wildfire detection. 

5.1. Implications 

The findings of this study carry profound implications for landslide risk management 
and mitigation. By identifying regions with distinct landslide-prone characteristics, the analysis 
supports the development of targeted prevention strategies. Areas classified as high-risk by 
Mean Shift Clustering can benefit from specialized interventions, such as reinforced slope 
stabilization, enhanced drainage systems, and the deployment of early warning systems tai-
lored to those regions' specific risks. This data-driven approach allows for more efficient al-
location of resources, focusing mitigation efforts where they are most needed. Targeted Pre-
vention Strategies: By identifying regions with distinct landslide characteristics, the study en-
ables the development of targeted prevention strategies. For example, areas identified by 
Mean Shift Clustering as high-risk could benefit from specific interventions such as rein-
forced slope stabilization, enhanced drainage systems, and early warning systems tailored to 
the identified risks. Moreover, the study has the potential to transform land-use planning. 
Understanding the spatial distribution of landslide-prone areas enables planners and policy-
makers to avoid high-risk regions when approving new developments or implementing strin-
gent construction regulations in such areas. This proactive approach can help mitigate the 
impact of landslides on infrastructure and communities, reducing the potential for loss of life 
and property damage. In addition, the models developed through this research have valuable 
real-world applications. By integrating the findings into GIS-based landslide susceptibility 
maps, local governments, urban planners, and disaster management agencies can leverage this 
information to improve the accuracy of landslide predictions. These tools support proactive 
risk management, helping authorities make informed decisions about emergency prepared-
ness, resource allocation, and protecting vulnerable populations. Furthermore, integrating 
these models into public safety infrastructure could lead to the development of automated 
systems that provide real-time monitoring and alerts, enhancing the overall resilience of com-
munities facing landslide risks. Lastly, the study highlights the importance of cross-discipli-
nary collaboration in landslide risk management. By combining topographic data with addi-
tional factors such as land cover, precipitation, and geological conditions, future research can 
further enhance the predictive capabilities of these models. This holistic approach would con-
tribute to developing adaptive strategies that account for the dynamic nature of landslide haz-
ards, ultimately fostering safer environments in landslide-prone regions. 

5.2. Limitations 

The limitations of this study are notable in two key areas: data quality and computational 
resources. First, the generalizability of the findings is constrained by the reliance on topo-
graphic data alone, which, while essential, does not account for other crucial factors like soil 
moisture, land cover, and precipitation that also influence landslide occurrence. Incorporating 
such diverse datasets could enhance the accuracy and robustness of the model. Second, the 
computational intensity of some clustering algorithms used in the study, particularly Hierar-
chical Clustering and Mean Shift, presents challenges in terms of scalability to larger datasets. 
These methods require significant computational resources, which could hinder their appli-
cation in more extensive studies. Addressing these computational challenges, potentially 
through more efficient algorithms or parallel processing techniques, would improve the fea-
sibility of applying these methods to larger and more complex datasets in future research. 

5.3. Future Work 
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 Several avenues for future research are proposed based on the study's findings. First, 
future studies should integrate additional data types such as meteorological data (e.g., precip-
itation patterns), geological information (e.g., soil type, fault lines), and land cover data. In-
cluding these factors would significantly enhance the models' predictive capabilities and pro-
vide a more holistic view of landslide risks. Second, to test the generalizability and robustness 
of the models, applying them to different geographical regions with varying topography and 
climatic conditions is essential. Comparative cross-regional studies, especially in tropical, arid, 
and mountainous environments, could offer valuable insights into how the models perform 
across diverse landscapes. These extensions could help build more adaptable and reliable 
landslide prediction systems. 
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