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Abstract: The efficacy of Cancer treatment often varies across different types of cancers. This study 

aims to investigate any pattern relationship in histopathological images of different cancer types to find 

any potential correlation between those patterns. Using deep image analysis techniques and artificial 

intelligence (AI), we extract, analyze, and compare the morphological parameters of cancer images to 

identify potential indicators of that treatment effective for one type that might be applicable for its 

correspondence. This research applied advanced image analysis, artificial intelligence (AI), machine 

learning, and more sophisticated statistical analysis to find the required pattern relationship for those 

parameters. The study answers the question regarding the correlation of different measurement param-

eters across different varieties of cancer cells. The model achieved an impressive ROC-AUC score of 

0.967, an F1-score of 0.805, and Cohen's kappa coefficient of 0.767, indicating a high level of agree-

ment and predictive performance. The overall accuracy of the model was 81%, with both macro and 

weighted averages also at 81%. These results provide strong evidence of meaningful pattern relation-

ships across different cancer types, potentially enhancing treatments' applicability across various can-

cers. 

Keywords: Cellpose; Efficacy morphological parameters; Correlation; Histopathology; Image analysis; 

Machine learning; Oncology. 

 

1. Introduction 

Cancer remains one of the leading killer diseases worldwide, requiring the development 
of different treatment strategies and approaches. Currently, Ki-67 is the main proliferation 
marker that has been used widely for a certain type of cancer cells. One of the methods for 
assessing the proliferative activity of cells is the immunohistochemical detection of cell cycle-
specific antigens [1]. Ki-67 is a marker that primarily indicates the proliferation rate of cells 
within a given sample. However, while Ki-67 is useful in identifying cell proliferation, it lacks 
specificity regarding different cell types and their unique responses to treatment, which limits 
its potential to guide precise therapeutic strategies. To overcome this limitation, analysis of 
additional cell-specific markers, such as CK8/18, can offer a more comprehensive under-
standing of the tumor microenvironment. This multi-marker approach would enable a deeper 
understanding of the cellular environment and treatment responses, allowing for more per-
sonalized and effective interventions. It also helps to understand the cell cycle dynamics and 
assess the growth rate of tumors. CK8/18 are specific markers for epithelial cells. These are 
used to identify the presence of epithelial cells and to diagnose epithelial tumor cells, and they 
basically provide the origin, cell type, and differentiation status. However, these markers lack 
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more issues in creating effective treatment like Ki-67 does since those have no proper corre-
lation like Ki-67’s. The main objective of this paper is to find out the relationship between 
these profilers. Cytokeratin (CK), an intermediate filament observed mainly in epithelial cells, 
is an essential cytoskeletal component involved in the fixation of the nucleus and maintenance 
of cell morphology[2]. CK8/18 rabbit monoclonal may be useful as a staining mask in a mul-
tiplex stain with mouse monoclonal antibody Ki-67[3].  

In recent years, digital pathology and artificial intelligence (AI) have revolutionized the 
analysis of histopathological images, enabling faster, more accurate diagnoses. Rapid advances 
in digital histopathology have also allowed the extraction of clinically relevant information 
embedded in tumor slides by applying machine learning and artificial intelligence methods, 
capitalizing on recent advancements in image analysis via deep learning[4]. Histopathological 
images are considered an appropriate tool for diagnosing cancer, which is tedious and error-
prone if done manually[5]. With feature extraction, deep learning, and digital pathology, dis-
ease diagnosis and prognosis could be more quickly and accurately determined, potentially 
revolutionizing modern healthcare and pathology practice[6]. Digital pathology is vital in ad-
vancing and optimizing histology processes to improve efficiency and reduce turnaround 
times[7]. Cellular segmentation has good out-of-the-box performance on various image 
types[8]. Multiple studies showed that luminal A tumors are usually smaller in size, while ba-
sal-like type tumors are mostly larger and more likely to have a regular shape[9]. Cases that 
showed the proper tumor morphology and were positive for P63 and CK 5/6 immunostains 
were considered squamous cell carcinoma[10].  

This study aims to discover the possibilities of using deep learning to analyze histopatho-
logical images and explore the relationship between CK8/18 images. By developing an AI-
based image analysis framework, we seek to quantify similarities between CK8/18 image types 
and evaluate their potential for predicting treatment outcomes. This approach would give a 
personalized expedite the time for a treatment. The contributions of this study are twofold: 
1. Developing an AI-based image analysis methodology to identify and quantify similarities 

between CK8/18 image types. 
2. Providing a framework for leveraging these similarities to predict the potential efficacy 

of cross-cancer treatments, offering new insights into personalized medicine and oncol-
ogy research. 
Given the growing incidence of cancer globally, especially in regions like sub-Saharan 

Africa, where access to healthcare resources is limited, this research also highlights the im-
portance of utilizing data-driven solutions to address disparities in cancer diagnosis and treat-
ment. This study highlights the need for both parties to accelerate their efforts to save lives 
currently lost due to the absence of these critical resources. At 128.2 per 100,000 people, 
cancer incidence in the 46 mostly low-income sub-Saharan African countries exceeds the av-
erage of 115.7 per 100,000 people in low and 108.5 per 100,000 people in medium Human 
Development Index (HDI) regions globally[11]. This alarming rate indicates that integrating 
advanced technologies like AI into the healthcare industries, especially for regions lacking 
many resources. The use of machine learning models in solving data-driven problems is grow-
ing significantly, resulting in higher prediction performance expectations[12]. This paper has 
applied different analysis methods to rectify and prepare the dataset for training using the ML 
method.  

The paper is organized as follows: Section 1 talks about the introduction regarding the 
subject matter alongside the study's contributions. Section 2 discusses the related works. Sec-
tion 3 presents the methodology employed in this study. Section 4 presents and discusses the 
numerical results and interpretation of the results. Section 5 concludes the paper alongside 
future studies. 

2. Related works  

 Statistical calculations were performed with JMP 14 software (SAS Institute Inc., NC, 
USA). Contingency tables and the chi2-test were performed to search for associations be-
tween CK18 and tumor phenotype[13]. A total of 11,952 (82.0%) of 14,579 tumor samples 
were interpretable in our TMA analysis. The remaining 2627 (18.0%) samples were not ana-
lyzable due to the lack of unequivocal tumor cells or loss of the tissue spots during the tech-
nical procedures[13]. The triple test includes clinical examination, imaging (mammogram or 
ultrasonogram), and tissue sampling (fine needle aspiration cytology (FNAC) and core needle 
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biopsy). These tests happen sequentially, and their findings must support the final diagnosis 
for accurate patient management [14]. Cancers originating from different organs and cell types 
are known, with the most common ones being breast, lung, colorectal, prostate, and stom-
ach[15]. That was with exception as there are a lot of places where cancer can originate and 
can’t be detected as easily as possible using the previous methods, which have been developed 
mainly for known types. The significant correlation between prognosis and stable expression 
in biopsy specimens suggests the usefulness of CK18 in selecting treatment strategies for 
OSCC[2]. That was the most recent approach, which has done significant work in this field 
using a different methodology with an accuracy of 56% correlation. Color segmentation pro-
cesses were applied to the original image based on the foreground image's detected hue and 
intensity distributions [16]. The potential to use quantitative image analysis and artificial in-
telligence is one of the driving forces behind digital pathology[17]. Deep learning models face 
several challenges. One major issue is the need for large annotated datasets, often difficult to 
obtain in biological research[18]. Additionally, the interpretability of deep learning models 
remains a concern, as their "Blackbox" nature can obscure the understanding of model deci-
sions[19]. Recent efforts have focused on developing explainable AI methods to address these 
challenges[20]. 

One key area of focus has been using convolutional neural networks (CNNs) to analyze 
medical images, such as histopathological slides and radiological scans. CNNs have demon-
strated the ability to accurately detect and classify various types of cancer, including breast, 
lung, and prostate cancer[21]. Beyond individual cancer types, researchers have also investi-
gated the potential of AI-based image analysis to identify cross-cancer patterns. For example, 
a study by [22] utilized a CNN to analyze lung cancer histopathological images and found that 
the model could distinguish between different subtypes of lung cancer and identify shared 
features across various cancer types. This suggests that AI-based image analysis may be able 
to uncover common molecular and morphological characteristics that cut across different 
cancer diagnoses. Similarly, [23] explored the use of deep learning for the analysis of brain 
tumor MRI scans, demonstrating the ability of their model to differentiate between glioblas-
toma and lower-grade gliomas while also identifying shared imaging features among different 
brain tumor types. This work highlights the potential of AI-based image analysis to provide 
insights into the underlying biology and cross-cutting patterns of various cancers. As AI-
powered image analysis continues to evolve, researchers are also exploring the development 
of interpretable and explainable models, which can shed light on the algorithms' specific fea-
tures and decision-making processes [24]. 

Although much work has been done in this field, there is still a research gap specifically 
addressing the correlation analysis of CK8/18 markers. Most studies have focused on analyz-
ing pathological images to treat cancer using the Ki-67 marker, widely known and used glob-
ally. While there has been some research on CK8/18 markers, these studies often lack accu-
racy and fail to provide a user-friendly modeling framework for non-technical workers, an 
area that requires special attention. According to[2], the highest correlation accuracy achieved 
so far is 56%, which is too low to make reliable decisions based on the data. While AI models 
often rely on probabilities, even a high probability can leave room for errors. 

3. Proposed Method 

This research employs a straightforward method that begins with data collection (im-
ages), then feature extraction and measurement of relevant parameters. Various statistical 
analyses are then applied using AI models, analysis software, and other statistical tools. Figure 
1 illustrates the overall flow of the methodologies used in this paper.  

 

Figure 1. Workflow of Data-Driven Model Development 

Feature Extraction  Data Collection Pre-processing 

Data Analysis Model Development Model Testing/Validation 
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While the main steps align with standard practices, there are some key deviations from tradi-
tional machine learning models. The critical focus here is on feature engineering, which in-
troduces a slight modification to the usual approach. Instead of relying solely on primary 
features, detailed pattern detection combines features and uncovers relationships through 
mathematical formulas. This unique aspect sets this research apart from previous studies in 
the field. Moreover, the methodology is clear and accessible, making it easy for those inter-
ested in learning more about this domain. 

3.1. Data Collection 

Histopathological images from lung and breast cancers have been collected. These im-
ages are categorized into two groups, each being divided into three groups. These groups 
contain three distinct individual images, a total of 18 images. These images are raw images 
used for analysis throughout the whole process in this study. The images are collected from 
different medical institutions on open-source Git Hub(https://github.com/Masklom/data). 
These images will be classified into six categories, and from those 18 images, around six fea-
tures will be extracted to get the required correlations. After going through some prepro-
cessing stages, we can easily find any pattern relationship from those features. 

Table 1. Categorization of Histopathological Images by CK/Ki Markers and Treatment Status. 

Main 
Group 

Subgroup 
Number 

of Images 
Features to be Extracted 

CNT 
(Control) 

CK+Ki+_CNT 3 Brightness, Area, Circularity, Centroids, Amorphism 

CK+Ki-_CNT 3 Brightness, Area, Circularity, Centroids, Amorphism 

CK-Ki-_CNT 3 Brightness, Area, Circularity, Centroids, Amorphism 

Treat 
(Treated) 

CK+Ki+_Treat 3 Brightness, Area, Circularity, Centroids, Amorphism 

CK-Ki+_Treat 3 Brightness, Area, Circularity, Centroids, Amorphism 

CK-Ki-_Treat 3 Brightness, Area, Circularity, Centroids, Amorphism 

 
Table 1 shows that the first group is controlled, which refers to drug-free. In addition, 

the second group is treated, which in this case refers to adding chemicals. The subgroups are 
separated according to whether or not CK and KI markers are present. The marker is shown 
as present when the plus sign is present and absent when the minus sign is present. Since we 
are interested in examining any potential correlation between these features from all images, 
the features that were extracted from each image are identical. As explained in the subsequent 
sections, all features have their description. 

3.2. Preprocessing 

This is the process of collecting images to be processed and analyzed. This stage includes 
normalization and noise reduction to ensure consistency and quality for analysis. Maintaining 
the highest resolution, proper aspect ratio and better depth of the images makes it easier for 
analysis and, more importantly, for visualization of the image with clear understanding. We 
can use the OpenCV library to implement these steps. Figure 2 shows how the whole step is 
being implemented. 

 

Figure 2. Image preprocessing flow diagram 
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The raw image is loaded from a specified file path in the image preprocessing stage. The 
pixel intensities of the image are then normalized into the range [0, 1]. To reduce noise in the 
image, a Gaussian filter is applied, which helps improve the image's smoothness. After that, 
the image's aspect ratio is calculated to ensure that the proportions are maintained when the 
image is resized based on the desired output size. The processed image will be saved in the 
specified directory if the save option is enabled. Finally, this preprocessed image is ready for 
further analysis. 

3.3.  Segmentation 

Convolutional Neural Networks (CNNs), widely used for image processing tasks, play a 
crucial role in advanced models like Cellpose, which we use here for cell segmentation. This 
process is particularly crucial in analyzing medical images like X-rays, where extracting tissues, 
organs, and pathological structures is imperative[25]. This is the process where the processed 
images will be segmented to identify each cell. Segmenting is key here because that is where 
the feature extraction starts. It was time to pinpoint the required region after preprocessing 
the image, such as scaling, normalizing, and resizing. Segmentation is one of the most ad-
vanced deep learning fields where pre-trained models can be tuned to meet our objectives. 
Different segmentation models have been developed specifically for this purpose, but in this 
case; to get the best out, we have tuned some parameters. In this case, we use Cellpose, which 
gives us a range of parameters to tune according to our needs. All parameters used to perform 
image segmentation can be adjusted based on our needs. Parameter settings are presented in 
Table 2.   

Table 2. Cellopse parameters. 

Parameter Value 

What to segment cytoplasm  

Channel to segment blue 

Nuclear Channel none 

Avg cell diameter 24 

Model cyto3  

 
This process is important for the subsequent steps as it provides a quantitative output 

of each cell. This process needs a very highly calibrated way of getting the highest accuracy 
or detecting with much higher precision. It has been completed using the Cellpose library 
with the cyto3 model. As this is the most advanced model at the time it gave a very good 
result in terms of getting better accuracy. Sample segmentation results are presented in Figure 
3. 

 

Figure 3. Original, segmented, and merged images of CK8/18 images 

3.4.  Feature Extraction 

The segmented image will then go for the extraction of important features that are used 
for analysis and the planning of appropriate models. By taking different structures into ac-
count, different parameters were extracted. These are the six main parameters extracted from 
the segmented image. The skimage library which is integrated with Python, has been used for 
extracting these parameters. This is the most crucial step for calibrating the goal of the result. 
This means that if we have properly extracted all features appropriately, then all the rest of 
the tasks will be easier to analyze. Many features can be extracted either directly or indirectly. 
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We can extract as many parameters from each cell as we want, but for this paper, we will only 
use those that are very important for demonstration purpose. For example, the segmented 
image has extracted area, perimeter, centroid_x, centroid_y, brightness, amorphism, and cir-
cularity features. The first four features are extracted directly from those features, while the 
last two can be extracted indirectly. All these parameters can be expressed as follows: 
• Brightness: The mean intensity value of each segmented object. For a segmented object, 

brightness can be calculated by summing all pixels' intensity values and then dividing by 
the total number of pixels. Equation (1) shows how to compute the brightness of each 
segment. 

Brightness =
∑ 𝐼𝑖

𝑁
𝑖=1

𝑁
 (1) 

where 𝐼𝑖  is the intensity of pixel 𝑖, and 𝑁 is the total number of pixels in the object. 

• Area: The area of each segmented object. 

• Centroid 𝑋, Centroid 𝑌: The x,y-coordinate of the centroid of each segmented object 
is computed as follows in Equations (2) and (3). 

𝑋 − coordinate: 𝑋 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 (2) 

𝑌 − coordinate: 𝑌 =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 (3) 

where 𝑥𝑖 and 𝑦𝑖 are the coordinates of pixel 𝑖, and 𝑁 is the total number of pixels in 
the object. 

• Amorphism: A measure of the irregularity of each segmented object, calculated as the 
standard deviation of distances from the centroid to the vertices of a pentagon. It can 
be computed using an indirect method with the following steps: First, identify or esti-
mate the vertices of the inscribed pentagon. Then, measure the distance from the cen-
troid to each vertex. Finally, calculate the standard deviation of these distances. A higher 
standard deviation indicates a more irregular shape. See sample in Figure 4. 

 

Figure 4. Amorphism Assessment Using Standard Deviation of Centroid-to-Vertex Distances 

• Circularity: A measure of how circular each segmented object is, In the same way as 
amorphism, circularity can be calculated as Equation 4. 

Circularity =
4𝜋 ∗ Perimeter2

Area
    (1) 

where the perimeter is the total length of the boundary of the object. A circularity of 1 
indicates a perfect circle, while values less than 1 indicate more elongated or irregular 
shapes. 

3.5. Statistical Analysis 

3.5.1. Correlation 

Finding a pattern that correlates one group with another is the main objective here, and 
this has been done by using the extracted features above and finding different patterns. This 
was the main concern for this research paper as it will clearly distinguish extracted parameters 
and show a clear relationship between different variables, extracted by using segmentation. 
This analysis shows us a relationship that will help us infer or project some generalizations 
for our problems. Beyond correlation analysis, other methods have been used, such as regres-
sion, ANOVA, and cluster analysis. As this is the last step in developing a model, it has gone 
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through lots of analysis methods. As it is shown in the graphs in Figure 5, we can observe 
their clear, distinct relationship for different groups and parameters. 

 

Figure 5. Correlation analysis graph 

3.5.2. Cluster Analysis 

Clustering is one of the most important analysis methods for this purpose as the cell is spread 
evenly, so it is one technique that helps us cluster into different groups. As most biological-related 
things fall under classification science, this was the best approach to deal with such kinds of analysis. 
There are six groups in this category, each of which has unique features based on the above parameters. 
We can easily observe how they exhibit this nature in Figure 6 

3.6 Deep Learning Analysis 

After testing using traditional analysis methods to find if there is any pattern relationship 
in each group, we got results that did not satisfy our expectations. For that reason, CNNs 
have been employed for deeper analysis. The model has been developed as follows and sum-
marized in Table 3. Even though our main target is finding the pattern relationship between 
each group, the paper has gone through more advanced ways to develop a generic model that 
will help classify with minimum time and cost resources. The model development starts with 
adjusting the data and ends with the final training using different methods. 

Data preprocessing is an important step for getting the data ready to train. The data was 
not in the proper way to fit the training model, and more importantly, there was an issue with 
balance where the data was not equal for all groups. Synthetically generated data has been 
employed to correct this. These are the steps that have been employed to rectify the dataset 
or to make corrections. 
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• Feature Encoding: The data was simply divided only into six groups, and it was not 
numerical data so it has been appropriately labeled for training purposes. 

• Balancing the dataset: The dataset for each group is not distributed evenly, so it has been 
adjusted using synthetically generated data. 

• Parameters selection: In this model development, six features or parameters were used 
to train the model. Among those parameters, some are more important than others, and 
here is the rank for each variable. Figure 7 shows how important each parameter is for 
the model to be trained. 

 

Figure 6. Scatter plots for different parameters 

 

Figure 7. Feature importance diagram 

This simplified model, implemented using Keras, is primarily designed for analysis pur-
poses, aiming to identify potential relationships that traditional methods may have over-
looked. The CNN architecture is specifically used for extracting spatial features from the 
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input images, such as textures, brightness, and shape, which are crucial for image-based tasks 
like segmentation. While a slight improvement in accuracy was observed, the results did not 
fully meet expectations. As a result, further analysis is required, particularly in exploring 
deeper relationships among the extracted features, to enhance the model's ability to identify 
key patterns. Efforts to develop a more accurate model and improve performance are dis-
cussed in the following sections. 

Table 3. CNN Model Configuration. 

Layer (Type) Output Shape Parameters Description 

Input Layer (Im-
age Input) 

(None, image_height, im-
age_width, 3) 

0 Input image with 3 color chan-
nels (RGB) 

Conv2D (32 fil-
ters) 

(None, new_height_1, 
new_width_1, 32) 

896 Convolutional layer with 32 fil-
ters, kernel size (3, 3) 

MaxPooling2D (None, pooled_height_1, 
pooled_width_1, 32) 

0 Pooling layer to reduce spatial di-
mensions 

Conv2D (64 fil-
ters) 

(None, new_height_2, 
new_width_2, 64) 

18,496 Convolutional layer with 64 fil-
ters, kernel size (3, 3) 

MaxPooling2D (None, pooled_height_2, 
pooled_width_2, 64) 

0 Pooling layer to further reduce 
spatial dimensions 

Flatten (None, flattened_size) 0 
Flattening the 3D output to feed 

into the dense layer 

Input Layer (Fea-
tures Input) 

(None, 4) 0 
Input for extracted features (e.g., 

area, centroid) 

Dense (32 units) (None, 32) 160 
Fully connected dense layer for 

manually extracted features 

Concatenate (None, concatenated_size) 0 
Concatenation of CNN features 

and manual feature vectors 

Dense (Output 
Layer) 

(None, 6) 
concatenated_size 

* 6 + 6 
Final output layer with softmax 

activation, 6 categories 

3.7. Pattern detection and Model building 

This model was developed using the XGB method. It has important features as it han-
dles a lot of decision trees and is more suitable for large groups like this, and it has become 
the most important in identifying relationships. Other models have been utilized to get the 
best result, but none of them were better than the XGB model. The nature of the dataset, 
where there are many groups to be classified, makes this model more effective than any other 
available model. By employing this method, the model can only predict 56%. 

 After going through a deeper analysis using the above model and the first extracted 
features, I found low accuracy. As a better solution, further re-engineering was done using 
the previously extracted features. The features were engineered in this way: Bright-
ness_to_Area_Ratio( £ ), Distance_to_Center(Υ), and Amorphism_Circularity(π). Each of 
them can be calculated as follows in Equations (5), (6), and (7). 

£ =
𝛼

𝐴
 (5) 

where 𝛼 is the brightness of the region calculated as the mean of intensity from (1), A is the 

area of the region and £ is the ratio of brightness to area. 

𝛶 = √(𝑋 −  µ𝑥)2  +  (𝑌 −  µ𝑦)
2
 (6) 

where 𝑋 and 𝑌 are x, y-coordinates of the centroid (geometric center) of the region calcu-
lated using Equations (2) and (3) in section 3.4, while, µ𝑥, µ𝑦 represent the mean coordinates 

and 𝛶 The Euclidean distance from the region’s centroid to a reference point. 

𝜋 =  Amorphism ∗  Circularity (7) 
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Where Amorphism and Circularity can be calculated from section 3.4, while 𝜋 is the prod-
uct of amorphism and circularity. 

The new features have been shown to reveal more distinct pattern relationships com-
pared to the originally extracted features, enhancing the model's ability to identify significant 
correlations between variables. In this analysis, the data was split into training and testing sets, 
with 80% of the data allocated for training and 20% for testing, ensuring that the model can 
generalize well. After the dataset was divided, both Random Forest and XGBoost models 
were trained, resulting in a notable improvement in accuracy and prediction performance. 
The Random Forest classifier provided insights into feature importance, while XGBoost 
helped handle more complex data structures, leading to more refined classification outcomes. 
The model development is summarized in Table 4, and a detailed XGB model summary is 
provided in Table 5. 

Table 4. Model Development Summary. 

Step Description 

Feature Engineering 
Added Brightness_to_Area_Ratio, Distance_to_Center, and              
Amorphism_Circularity_Product. Dropped unused columns. 

Train-Test Split Split data into 80% training and 20% testing with train_test_split. 

SMOTE Applied SMOTE to balance the training data (over-sampling minority classes). 

Scaling Standardized the features using StandardScaler. 

Model Used RandomForestClassifier with default parameters. 

Evaluation Calculated metrics: ROC-AUC, F1-score, Cohen’s Kappa, Confusion Matrix. 

Table 5. XGB Model Summary. 

Attribute Details 

Number of Trees 100 

Max Depth Unlimited 

Feature Importance  Random Forest naturally ranks feature importance. 

Handling Imbalance Handled by SMOTE before training the model. 

Accuracy Measured using precision, recall, and f1-score for classification performance. 

Feature Scaling Standardized using StandardScaler. 

3.8. Model Testing/Validation 

This is the final step for the model to validate whether it is acting as expected. Some 
metrics were used to validate this. In this research, the Confusion Matrix and ROC-AUC is 
used. Confusion Matrix clearly shows true positive, false negative, true negative, and false 
positive values for all of the six groups. All of them help to understand the predicted and 
actual values of the model. All these metrics are True Positive (TP), which indicates correctly 
predicted positive cases, False Negative (FN) which shows incorrectly predicted negative 
cases, True Negative (TN) which tells correctly predicted negative cases, and False Positive 
(FP) which shows Incorrectly predicted positive cases. These metrics show the model's per-
formance in tabular form. Whereas ROC-AUC is a graphical representation that directly 
shows what is happening in the overall metrics that have been discussed clearly. It just uses 
the visual form to signify how each group's values are performing well 

4. Results and Discussion 

The numerical results section will present the findings of the statistical analyses, includ-
ing: 

4.1. Confusion Matrix 

The confusion matrix provides a detailed breakdown of the model's performance for 
each class. The results in Figure 8 show that the model performs well across all classes, with 
a high number of true positives and a low number of false positives and false negatives.  
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Figure 8. Confusion Matrix 

4.2. Evaluation Metrics 

 The classification report provides a summary of the model's performance for each class. 
The metrics used are: 
• Accuracy: This is another evaluation metric that measures how accurate our model is 

performing in classifying those individual groups. It is also different from precision in 
which it includes both the positive and negative portion It can also be classified mathe-
matically as follows in Equation (8). 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑇 + 𝐹𝑁
  (8) 

• Precision: The ratio of true positives to the sum of true positives and false positives. It 
measures the model's ability to correctly identify instances of a particular class. Equation 
(9) shows how to compute the precision. 

  Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (9) 

 
• Recall: The ratio of true positives to the sum of true positives and false negatives. It 

measures the model's ability to correctly identify all instances of a particular class. Equa-
tion (10) shows how to calculate the Recall 

Recall =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (10) 

• F1-score: The harmonic mean of precision and recall. It provides a balanced measure of both 
precision and recall. F1-score calculated using Equation (11). 

F1score = 2 ∗
(Precision ∗  Recall)

Precision +  Recall
 (11) 

The results show in Table 6 that the model performs well across all classes, with preci-
sion, recall, and F1-score values ranging from 0.74 to 0.90. The support values indicate that 
the classes are relatively balanced, with approximately 3330 instances in each class. 

Accuracy and Macro Average: The model's accuracy is 0.81, indicating that it correctly 
classifies approximately 81% of the instances. The macro average values for precision, recall, 
and F1-score are also 0.81, indicating that the model performs consistently across all classes. 
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The F1-score is 0.805 for macro-average case, which is a good indicator of the model's 
performance. It considers both precision and recall, providing a balanced measure of the 
model's ability to classify instances correctly. 

Table 6. Evaluation Metrics for each group. 

Groups Precision Recall F1-Score Support 

CK+Ki+_CNT 0.85 0.83 0.84 3334 

CK+Ki+_Treat 0.79 0.79 0.79 3329 

CK-Ki+_CNT 0.78 0.74 0.76 3334 

CK-Ki+_Treat 0.81 0.82 0.81 3338 

CK-Ki-_CNT 0.76 0.75 0.76 3331 

CK-Ki-_Treat 0.84 0.90 0.87 3334 

Table 7. Summarizes both the macro-average and weighted-average results for the model. 

Metric Macro-Average Weighted-Average 

Precision 0.805 0.818 

Recall 0.805 0.820 

F1-Score 0.805 0.810 

Accuracy - 0.810 

 
The ROC-AUC score is 0.967, which is very high. This indicates that the model can 

distinguish between the classes very effectively. The ROC-AUC value is calculated using 
Equation (12), and the graph is presented in Figure 9. 

ROC − AUC = ∫ TPR(𝑇)𝑑(FPR(𝑇))
1

0

 (12) 

where TPR is the true positive rate and FPR is the false positive rate. 
This study also includes an additional matrix, Cohen's Kappa Coefficient, calculated us-

ing Equation (13). Cohen's kappa coefficient result is 0.767, indicating a high agreement level 
between the predicted and actual classes. 

𝐾 =
(𝑝𝑜 − 𝑝𝑒)

1 − 𝑝𝑒

 (13) 

where 𝑝𝑜 is the observed agreement and 𝑝𝑒 is the expected agreement. 

4.3 Ablation Study Results  

The ablation study provides important insights into the relative importance of various 
components in our pipeline, particularly feature extraction and pattern detection. By system-
atically removing or altering these components, we observed significant changes in perfor-
mance, underscoring their critical role. The results of the ablation study tests are presented in 
Table 8.   

Table 8. Ablation Study Results. 

Component Accuracy F1-Score ROC-AUC 

No Pattern Detection 0.56 0.61 0.87 

Simplified Segmentation 0.65 0.68 0.80 

No Statistical Analysis 0.76 0.78 0.92 

Proposed Model/All component 0.81 0.805 0.967 

 
The analysis reveals that the newly derived features, such as Brightness-to-Area Ratio, 

Distance-to-Center, and Amorphism-Circularity, exhibit strong positive correlations with 
CK8/18, suggesting that CK8/18 could be a more reliable marker for these parameters com-
pared to Ki67. These features are crucial for distinguishing between different morphological 
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patterns in the dataset, as indicated by their high correlation with CK8/18. Meanwhile, Mean 
Intensity and Eccentricity demonstrate moderate correlations, showing some level of agree-
ment between CK8/18 and Ki67, though these features do not have as strong an influence 
as the former group. This suggests that while these features contribute to the model's predic-
tive power, they may not be as critical in distinguishing between different cancer types. 

In contrast, most of the other primarily extracted parameters show weak correlations, 
indicating that CK8/18 may not be a reliable marker for these features compared to Ki67. 
This implies that these features contribute less to the model's overall performance and require 
further refinement. Overall, the model achieves strong performance, reflected in an ROC-
AUC score of 0.9673, an F1-score of 0.8053, and a Cohen’s kappa coefficient of 0.767. The 
model also achieved an accuracy of 0.81, with both macro and weighted averages confirming 
this consistency. 

The ablation study results in Table 8 further underscore the importance of these features. 
When pattern detection is removed, model performance is substantially declined (accuracy 
drops to 0.56), demonstrating that the strong correlations derived from features like Bright-
ness-to-Area Ratio and Distance-to-Center rely heavily on pattern detection. Similarly, when 
segmentation is simplified, the performance drops (accuracy falls to 0.65), suggesting that 
precise segmentation is vital for features like Mean Intensity and Eccentricity, which show 
moderate correlations. When statistical analysis is omitted (accuracy of 0.76), the relatively 
smaller drop in performance implies that while statistical analysis refines the model's ability 
to interpret weakly correlated features, it is less crucial than pattern detection or segmentation 
in the overall model pipeline. This shows that the ablation study results align well with the 
observed correlations of the features, highlighting the critical role of pattern detection and 
segmentation in achieving the model's strong performance metrics. 

6. Conclusions 

To sum up, this research has shown how deep image analysis and artificial intelligence 
can be used to find and measure morphological similarities between various cancer types. 
Using sophisticated artificial intelligence models and statistical techniques to analyze histo-
pathological images, we have found that re-engineered parameters like brightness-to-area ra-
tio, distance to center, amorphism, and circularity have strong positive correlations. Suggest-
ing the potential for cross-cancer treatment insights. These results suggest that treatments 
that work for one type of cancer may work for other types as well, laying the groundwork for 
more individualized and effective cancer treatments. In addition to speeding up the analysis 
process, AI in this study has revealed patterns and relationships that might not have been 
obvious using more conventional techniques. Some morphological parameters showed strong 
correlations between each group of CK8/18 staining, indicating that these markers could be 
useful in cross-comparison research. Future research should enlarge the dataset to include a 
wider range of cancer types and more comprehensive image samples to validate the results 
further. Additionally, experimenting with various image processing methods and adding more 
AI models could improve the analysis's robustness and accuracy. 

 Translating this research into useful oncology solutions will require examining the clin-
ical applicability of these findings in real-world treatment scenarios. Overall, this work adds 
to the expanding corpus of research in artificial intelligence-assisted medical image analysis 
and emphasizes how cross-cancer morphological analysis may be used to develop novel ther-
apeutic strategies for cancer patients. We can get closer to developing more efficient, individ-
ualized cancer treatments that enhance patient outcomes by carrying out more research and 
improvement of these methods. 
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