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Abstract: Each year, over 1.9 million cases of colorectal cancer (CRC) are diagnosed globally, with 

projections reaching 3.2 million cases and 1.6 million deaths annually by 2040. CRC ranks as the third 

most common cancer, contributing to over 10% of new cases with a 5-year survival rate of only 65%. 

Effective early detection could raise this rate to 90%, but current gold-standard methods are manual 

and prone to errors. To address this, our study introduces AI4CRC, a deep learning-based framework 

for automating the detection of polyps, the tumors responsible for colorectal cancer, in the human 

colon. We trained state-of-the-art models—including VGG, ResNet, DenseNet, and EfficientNet—

and evaluated them on a publicly available dataset. Our approach leverages fine-tuning, various activa-

tion functions (ReLU, ELU, PReLU, Mish, Swish), and optimizers (Adam, RMSProp) to optimize 

performance. DenseNet and EfficientNet outperformed others, achieving 99% accuracy and a 99.4% 

F1 score. These results validate the potential of deep learning to enhance colorectal cancer detection, 

improving diagnosis accuracy and patient outcomes. 

Keywords: Colonoscopy; Colorectal Cancer; Deep Learning; Digital Health; Transfer Learning. 

 

1. Introduction 

Colorectal cancer (CRC) is the third most prevalent type of cancer, representing approx-
imately 10% of all cancer cases, with more than 1.9 million cases diagnosed each year, world-
wide[1]. Colorectal cancer, caused by uncontrolled cell proliferation (or polyp) resulting from 
genetic mutations, manifests in the colon within the large intestine of the human body (Fig 
1). Its primary contributing factors include old age, excessive consumption of processed food, 
alcohol abuse, smoking, and hereditary[2].  

As illustrated in Fig 2, a polyp is an abnormal tissue growth that protrudes from a mu-
cous membrane. Early detection is critical, as polyps can progress to colorectal cancer, signif-
icantly impacting the human life expectancy. The cumulative risk of cancer developing in an 
unremoved polyp is 2.5% at 5 years, 8% at 10 years, and 24% at 20 years post-diagnosis. The 
5-year survival rate for polyp-induced cancer is 65%[1], but with early detection mechanisms, 
this rate can improve to as high as 90%[3]. 

Early, precise endoscopic excision of precancerous lesions is considered the most effec-
tive method for preventing colorectal cancer[4]. While colonoscopy is widely regarded as the 
gold standard for conducting this excision of precancerous lesions, its manual implementa-
tion process by gastroenterologists, who are often overworked, is linked with an increased 
rate of missed cases[5]–[7]. Moreover, the utter reliance on human expertise could also intro-
duce inconsistencies in polyp detection, especially in the early stages when the polyps are 
small and less detectable. This variability highlights a significant gap in the current diagnostic 
approach, which could be bridged through the integration of artificial intelligence (AI) and 
digital health technologies to improve the efficiency of detection and reduce the incidence of 
missed cases of polyps during colonoscopy[8], [9]. 
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Figure 1. The Human digestive system and location of the colon [10]. 

 

Figure 2. Sample images of polys[11]. 

Machine learning-based methods have become essential tools in automating disease di-
agnosis within the digital health domain. Popular approaches include Decision Trees, Naive 
Bayes, Support Vector Machines, and Random Forests[12], [13]. However, many of these 
systems rely on preprocessed features for training, which can result in missed opportunities 
to learn the most critical features necessary to effectively identify polyps[14], [15]. This limi-
tation hinders the adoption of automatic systems in real-world clinical practice. Furthermore, 
while some existing works have explored deep learning-based approaches[9], [14], [15], they 
often lack the high accuracy required for robust colorectal cancer prediction. Therefore, de-
veloping more accurate AI approaches that can directly learn deep insights and features from 
diagnostic images is crucial for providing more reliable and efficient diagnostic recommenda-
tions for clinical experts. 

To address these challenges, we introduce AI4CRC (Artificial Intelligence for Colorectal 
Cancer), a method designed to leverage deep learning and transfer learning to improve the 
detection of polyps, which are precursors to colorectal cancer, in colonoscopy images. Deep 
learning, particularly through Convolutional Neural Networks (CNNs), has shown significant 
success in clinical decision support tools via computer vision [16], [17]. Unlike traditional 
neural networks, CNNs can learn complex features from images using a series of convolu-
tional layers with small-sized kernels that apply weights to input data and pass them through 
an activation function. This approach enhances the model's learning efficiency, leading to 
more accurate results. 

Furthermore, our approach also leverages transfer learning, a method that enables the 
use of pre-trained models on new, but related tasks, to improve the efficiency and accuracy 
of our system. This is because while deep learning approaches have shown promise in im-
proving detection rates, they frequently rely on large, annotated datasets, which are not always 
available. This addition of transfer learning differentiates our method from several existing 
works in literature. 
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Transfer learning is particularly advantageous in the context of colorectal cancer detec-
tion due to several reasons: 
1. Limited Annotated Data: Colorectal polyp detection datasets are often limited in size 

and annotation due to the invasive manner of the colonoscopy procedure, which poses 
a challenge for training deep learning models from scratch. Transfer learning mitigates 
this issue by allowing us to fine-tune pre-trained models that have already learned gen-
eralized features from large-scale datasets, such as ImageNet [18]. These pre-trained 
models can then be adapted to the specific task of polyp detection, requiring fewer an-
notated samples to achieve high accuracy[19]. 

2. Faster Convergence: Starting with a pre-trained model enables faster convergence during 
training, as the model has already learned useful features and only needs to adapt these 
to the specific domain of colonoscopy images. This reduces the overall training time and 
computational resources required, making it feasible to develop an accurate model even 
with limited access to high-performance computing resources[20]. 

3. Improved Generalization: By leveraging knowledge from related tasks, transfer learning 
enhances the model’s ability to generalize to new, unseen data[21]. This is particularly 
important in medical applications where variability in image quality, patient de-
mographics, and disease manifestation can affect model performance. Transfer learning 
helps in building a more robust model that can maintain high accuracy across different 
clinical scenarios[22]. 
This use of transfer learning not only differentiates our method from several existing 

works in the literature but also directly addresses the challenges posed by limited data availa-
bility and the need for efficient model training. Hence, in this work, we employ deep learning 
and transfer learning approaches intending to develop a fast and intelligent diagnostic system 
that can be efficient and effective in aiding the prevention of colorectal cancer. In summary, 
the key contributions of this work are: 
1. Development of an intelligent diagnostic system for colorectal cancer: We present 

AI4CRC, a deep learning-based system that automates the detection of colorectal cancer, 
leveraging state-of-the-art deep learning models such as VGG, ResNet, DenseNet, and 
EfficientNet. 

2. Model Optimization through Transfer Learning: Our approach incorporates transfer 
learning, allowing pre-trained models to be adapted for polyp detection, thereby improv-
ing the system's efficiency and accuracy in predicting colorectal cancer, even with limited 
annotated datasets. 

3. Improvement in Diagnostic Accuracy: Our work demonstrates substantial improve-
ments in accuracy, in prediction of colorectal cancer, compared to existing benchmarks 
in literature compared. 
By developing an intelligent diagnostic system, we aim to improve the early detection of 

colorectal cancer, ultimately contributing to better clinical outcomes and patient care. The 
rest of our article is arranged as follows: Section 2 discusses the related works. In Section 3, 
we present the proposed methods and materials. Section 4 discusses our experimental setup 
and results. We compare our method to existing works in Section 5; and we wrap up the 
article in Section 6. 

2. Related Works 

Colonoscopies play a crucial role in identifying precancerous polyps and abnormalities 
that may develop into cancer. Most early research works on polyp and colorectal cancer de-
tection focused on analyzing image features using image processing techniques. In the context 
of image processing, features are individual characteristics of an image that are tied to the 
visual primitives that make up an object (such as edges, colors, lines, etc.). Methods for de-
tecting features in an image are often used to pinpoint regions of interest (ROIs), which are 
subsequently described using a single or a set of features. Shape, texture, and color are the 
most prevalent subcategories of feature descriptions[23]. More recently, over the last decade, 
as machine and deep learning methods have advanced, more efforts have also been focused 
on leveraging them to improve the accuracy of predictions for colorectal cancer. Overall, the 
current body of literature on classifying polyp/colorectal disease using image processing can 
be categorized into three main subfields. They are (a) approaches using shape descriptors, (b) 
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methods utilizing texture and color features, and (c) techniques based on machine/deep learn-
ing. 

Shape descriptors: Shape descriptors have long been a fundamental approach in medical 
image analysis, particularly for detecting and classifying polyps in colorectal cancer. These 
algorithms focus on extracting the geometrical features of polyps, such as their size, contour, 
and curvature, which are critical in distinguishing benign from malignant growths. Early 
works in this domain utilized simple shape descriptors like circularity, aspect ratio, and area 
to detect anomalies in colonoscopy images. For example, research [24] developed a method 
that utilized polyp candidates' curvature and shape features to enhance detection rates in co-
lonoscopy images. Their study demonstrated that shape-based features, when effectively ex-
tracted, could significantly improve the accuracy of polyp detection, although the reliance on 
manual feature extraction posed limitations in handling diverse polyp shapes. 

More advanced approaches have employed statistical shape models (SSMs), which pro-
vide a more robust framework for capturing the variability in polyp shapes. For example, in 
[25], the authors introduced a shape model-based algorithm that combined principal compo-
nent analysis (PCA) with a statistical shape model to detect polyps with varying shapes and 
sizes. Their model showed improved performance over simpler shape descriptors, particularly 
in detecting polyps that deviate from standard shapes. However, the dependence on accurate 
segmentation remains a challenge, as errors in segmentation can lead to misclassification. 

2.1. Text and Color descriptors 

Textural and color-based descriptors represent another critical area in analyzing colorec-
tal cancer images. These descriptors leverage the visual patterns and color variations within 
polyps to distinguish them from surrounding tissues. Early approaches in this field focused 
on gray-level co-occurrence matrices (GLCM) and color histograms to capture polyps' tex-
tural and color information. In [26], a texture-based approach using GLCM combined with 
color histograms was proposed to enhance polyp detection accuracy. This method was par-
ticularly effective in identifying subtle texture differences that are often overlooked by shape-
based methods, making it a valuable complementary tool. 

Furthermore, recent advancements have seen the integration of more sophisticated tex-
tural descriptors, such as Local Binary Patterns (LBP) and Gabor filters, which provide multi-
scale texture analysis. In [27], the authors employed a combination of LBP and color histo-
gram features to develop a hybrid model for colorectal cancer prediction. Their study high-
lighted the importance of multi-modal feature extraction, demonstrating that combining tex-
tural and color-based descriptors can significantly improve detection accuracy. Despite these 
advances, text and color-based descriptors often struggle with variability in image quality and 
lighting conditions, which can impact their robustness in clinical settings. 

2.2 Machine and Deep Learning 

The application of machine learning and deep learning methods in colorectal cancer pre-
diction has gained significant attention in recent years, offering a data-driven approach to 
feature extraction and classification. Unlike traditional shape and textural descriptors requir-
ing more labor-intensive manual feature extraction, machine learning models can directly 
learn key features from large datasets. Early machine learning models, such as Support Vector 
Machines (SVMs) and Random Forests (RFs), have been pivotal in classifying colorectal 
polyps. For example, in[28], an SVM-based model was developed that combined multiple 
features, including texture, shape, and color, to classify polyps in colonoscopy images. The 
model achieved a classification accuracy of 72%, demonstrating the potential of machine 
learning in enhancing polyp detection. However, the study also highlighted limitations in its 
reliance on manually extracted features, making it less adaptable to large datasets. In another 
study [29], a Random Forest classifier was used to analyze colonoscopy images, integrating 
both textural and color descriptors to improve polyp detection rates. This approach yielded 
an accuracy of approximately 83%, showing that RFs can effectively handle the variability in 
polyp appearance. However, the reliance on handcrafted features for its training still limited 
the model's scalability and adaptability to new data. 

Deep learning, particularly Convolutional Neural Networks (CNNs), has improved per-
formance by automating feature extraction and achieving higher accuracy in polyp detection. 
For example, in [30], a CNN model designed for polyp detection was introduced and trained 
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on a dataset of colonoscopy images, and achieved an F1 score of 91%, outperforming tradi-
tional machine learning methods. Another noteworthy example is the work presented in [31], 
where a deep learning model was utilized to detect polyps from endoscopic images with an 
F1 score of 83.2%. Furthermore, in [32], the authors introduced the U-Net architecture, a 
CNN-based model designed for medical image segmentation, which has since become a pop-
ular model in the detection of polyps. Their model demonstrated high performance in iden-
tifying polyps with diverse shapes, sizes, and textures, surpassing traditional machine learning 
methods. However, it is desirable to have a model that can achieve up to 99+% in accuracy 
without necessarily expending a ton of computational resources. 

Overall, while there has been significant progress in detecting and classifying polyps us-
ing traditional and machine/deep learning methods, there are still opportunities for improve-
ment. Traditional methods often fall short in terms of accuracy and robustness, particularly 
when dealing with the inherent variability and noise in medical images. Moreover, while some 
studies have explored the use of deep learning for polyp detection, there remains a gap in 
leveraging transfer learning effectively to enhance detection accuracy without the need for 
extensive dataset-specific training, leading to high computational resource complexity.  

This study seeks to address these gaps by applying transfer learning to fine-tune pre-
trained deep learning models for the early detection of polyps in colonoscopy images. Our 
approach focuses on improving detection accuracy and generalizability while also minimizing 
the need for large, annotated datasets. By doing so, we aim to create a more reliable and 
accessible tool for early colorectal cancer detection, which could significantly enhance patient 
outcomes and reduce the global burden of this disease. 

3. Materials and Method 

This study proposes a deep learning-based approach to enable and improve the detection 
of polyps in colonoscopy images for the early detection of colorectal cancer – with a focus 
on also leveraging transfer learning to improve model accuracy and generalizability. Fig 3 
provides a comprehensive overview of the proposed methodology, outlining the sequential 
steps from data acquisition and preprocessing through to model training, including transfer 
learning, and final model evaluation. 

 

Figure 3. Overview of the proposed method 

3.1. Dataset Acquisition 

In this study, we use an open-source dataset released by the Computer Vision Center[11] 
for model training. The dataset comprises real-life patient data with two distinct classes: 
polyps (positive class) and non-polyps (negative class), both of which are completely labeled. 
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Due to the high cost of obtaining images for most medical datasets, particularly for co-
lonoscopy, which is a very invasive procedure, the amount of available training data is limited, 
consisting of approximately 1212 images, as shown in Table 1, each representing a single 
patient. However, we address this limitation by utilizing transfer learning and implementing 
on-the-fly data augmentation techniques during training. These approaches enable us to ex-
pand the dataset and optimize performance effectively. 

Table 1. Dataset split-up. 

Class Training Validation Testing Total 

Polyp 424 91 91 606 

Non-polyp 424 91 91 606 

Total 848 182 182 1212 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Sample images from the dataset. (a) and (b) show colorectal polyps (positive class); while 
(c) and (d) show normal colonoscopy images without polyps (negative class) 

Figure 4 illustrates examples from the dataset: Panels A and B represent images from the 
Polyps class, where colorectal polyps are clearly visible and highlighted. Panels C and D rep-
resent images from the non-polyps class, which show normal colonoscopy views without any 
visible polyps. 

3.2. Dataset Preprocessing 

Data preprocessing is a crucial step in preparing the raw colonoscopy images for input 
into the deep learning models. With CNNs’ excellent ability to learn directly from image data, 
we do not need to worry about manually extracting or engineering features, unlike traditional 
methods. Hence, our data preprocessing process become more seamless. This study employs 
a multi-stage preprocessing pipeline, as described below: 

3.2.1. Partition Data  

The dataset is partitioned into three subsets: training, validation, and testing. The training 
set is used to train the model, the validation set is used to tune hyperparameters and avoid 
overfitting. The test set is reserved for the final evaluation of the model’s performance. We 
used the “70:15:15” ratio (consistent with common practice in literature) to split our dataset 
into training, validation, and testing, respectively as shown in Table 1. 

3.2.2. Resize and Augment On-the-Fly 

To enhance the robustness and generalization of the model, the images are resized and 
undergo on-the-fly data augmentation during training. Our approach is similar to the aug-
mentation techniques implemented in [33] and [34], where techniques such as random rota-
tions, flips, zooms, and shifts are applied to simulate the variability in real-world clinical set-
tings. This step helps the model become more resilient to variations in polyp appearance. 

3.3. Model Selection and Transfer Learning 

The core of our proposed method is the training of deep learning models as well as 
transfer learning. Transfer learning allows us to leverage pre-trained models, specifically those 
trained on the ImageNet dataset, which contains millions of images across thousands of cat-
egories. By importing these pre-trained weights, the models can benefit from the extensive 
feature extraction capabilities developed during training on diverse image data, which are then 
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fine-tuned for the specific task of colorectal polyp detection. Below is a description of the 
models explored in our experiments: 

3.3.1. Linear Perceptron 

The Linear Perceptron, introduced by Rosenblatt, is a simple neural network model with 
no hidden layers, used primarily as a baseline for comparison [35]. While it lacks the complex-
ity needed for deep feature extraction, it provides a foundational benchmark for evaluating 
more sophisticated models. 

3.3.2. Multi-layer Perceptron 

This model extends the linear perceptron by adding one or more hidden layers, allowing 
it to capture more complex patterns. However, it is still limited in handling the intricate fea-
tures present in image data compared to convolutional networks [35]. 

3.3.3. Logistic Regression 

Another baseline model, logistic regression, is a statistical method used for binary clas-
sification tasks, which is useful for understanding the model's performance in a linear two-
class setting. 

3.3.4. Basic CNN 

The Basic CNN model (see Figure 5) consists of several convolutional layers followed 
by pooling layers and fully connected layers. CNNs raised the bar to another level in image 
recognition tasks, with their core ability to directly identify and learn patterns from images 
[36]. This makes them more effective for image classification tasks compared to simpler mod-
els. 

 

Figure 5. Basic CNN Architecture [Modified from [3]] 

3.3.5. VGG19 

VGG19 is a deep CNN with 19 layers, known for its uniform architecture that stacks 
convolutional layers with small 3x3 filters[37]. By importing the ImageNet weights, VGG19 
benefits from strong feature extraction capabilities, particularly in identifying fine-grained de-
tails within the images, which are crucial for accurate polyp detection. 

3.3.6. MobileNetV2 

MobileNetV2 is an efficient CNN model designed for mobile and resource-constrained 
environments[38]. It uses depth-wise separable convolutions to reduce the number of param-
eters without sacrificing performance. The use of ImageNet weights enhances its ability to 
detect polyps in real-time applications, providing a good balance between accuracy and com-
putational efficiency. 

 

3.3.7. ResNetV50 

ResNetV50 (50-layer Residual Network) is part of the ResNet family, which introduced 
the concept of residual learning to address the vanishing gradient problem in deep networks 
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[39]. By using ImageNet pre-trained weights, ResNetV50 can effectively recognize complex 
patterns and improve detection accuracy, especially in cases where polyps have irregular 
shapes or textures. 

3.3.8. DenseNet121 

DenseNet121 is a CNN that connects each layer to every other layer in a feed-forward 
approach, which helps in mitigating the vanishing gradient problem and encourages feature 
reuse[40]. The pre-trained ImageNet weights allow DenseNet121 to excel in detecting subtle 
features in colonoscopy images, making it a strong candidate for polyp detection tasks. 

3.3.9. EfficientNetV2M 

EfficientNetV2M is a scalable CNN model that optimizes both accuracy and efficiency 
[41]. It employs a compound scaling method to balance network depth, width, and resolution. 
By importing the ImageNet weights, EfficientNetV2M can leverage its efficient architecture 
to detect polyps with high accuracy while maintaining computational efficiency. 

 

Figure 6. Transfer Learning Architecture (Modified from [42]) 

Each of these models—VGG19, MobileNetV2, ResNet50, DenseNet121, and Effi-
cientNetV2M—was fine-tuned on the colorectal polyp dataset by retraining the final layers 
to adapt the pre-trained features to the specific task. It is important to clarify that the models, 
including the EfficientNetV2M, were not structurally modified but were fine-tuned. This 
means that the pre-trained base architecture was frozen, and only the final layers were re-
trained to suit the specific characteristics of the colorectal polyp detection task. Fine-tuning 
these models offers several advantages. First, it enhances the detection system's accuracy by 
leveraging the rich feature representations learned from large, general-purpose datasets like 
ImageNet. Second, fine-tuning significantly reduces the training time and computational re-
sources required compared to training a model from scratch, which is particularly beneficial 
when working with limited annotated data, as is often the case in medical image analysis. A 
visual description of the transfer learning architecture is shown in Fig 6. 

The top section of the figure shows the original task where the model was pre-trained 
on the ImageNet dataset, while the bottom section depicts our task, where the final layers 
were fine-tuned on the colorectal polyp dataset. The modifications made are marked in the 
figure, highlighting the transfer of parameters and the adaptation of the output layers from 
1000 ImageNet classes to 2 classes specific to our task. 
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3.4. Evaluation Metrics 

Following model development, we evaluated their performance on the test dataset using 
appropriate metrics. We focused on key metrics such as precision, recall, accuracy, and F1 
score, shown in Equations 1 – 4, which are commonly used for classification tasks in litera-
ture. Other metrics such as AUC[43], [44] can also be used, but was not considered here as 
the F1 score, which harmonizes recall and precision, already provides a robust and compre-
hensive measure of the model’s performance in this medical context. 

The F1 score is particularly important in medical applications where false positives and 
negatives carry significant consequences. By balancing precision and recall, the F1 score offers 
a more nuanced evaluation of the model's ability to identify true cases while minimizing errors 
correctly, which is critical for ensuring patient safety and effective diagnosis[45]. This makes 
the F1 score a preferred metric in scenarios with high misclassification costs, such as in med-
ical diagnostics.  

Accuracy is the ratio of correctly identified samples to the total number of samples in a 
specific class. Recall measures the proportion of correctly identified samples for a particular 
class out of the total number of samples that actually belong to that class. Precision is the 
number of correctly classified samples for a specific class divided by the total number of 
samples classified as that class[23]. F1 Score combines precision and recall into a single metric 
by taking their harmonic mean. It is calculated as the weighted average of precision and recall, 
providing a balanced assessment of a classifier's performance. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

4. Implementation and Results 

4.1. Experimental Setup and Parameter Settings 

In order to optimize the performance of the proposed model, we conducted two sepa-
rate series of experiments – Stage-I and Stage-II. In Stage-I, the models used were entirely 
neural network-based, with the exception of the Logistic Regression model. For the Logistic 
Regression model, we reshaped the 3D image data (100x100 pixels with 3 color channels) 
into 2D arrays by flattening each image into a single vector of 30000 features (3*100*100). 
This transformation enabled the Logistic Regression model to process the image data in a 
format suitable for linear classification. 

In Stage-I, we perform (global) training across all models, and Table 2 provides an over-
view of the parameter configurations used for training the models, which are critical for op-
timizing their learning performance. The logistic regression model requires no parameter se-
lection as its implementation function is straightforward using the TensorFlow library. For 
the rest of the models in Stage-I experiments, we chose Binary Cross-Entropy as the loss 
function which is perfect for the two-class classification task, distinguishing between Polyps 
and Non-Polyps. We set the maximum number of training epochs to 50, with early stopping 
implemented to prevent overfitting by halting training when no significant improvement was 
observed in validation accuracy. We selected the Adam optimizer for its adaptive learning 
rate, efficiently adjusting model weights during training. By setting the learning rate to 0.0001, 
we aimed to strike a balance between optimization speed and stability, ensuring smooth con-
vergence. We applied the ReLU activation function in the convolutional layers to introduce 
non-linearity, which enhances the model's capacity to learn intricate patterns from the images. 
To further refine the models, we employed a learning rate scheduler, dynamically adjusting 
the learning rate during training to optimize performance.  
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Table 2. Stage-I and Stage-II Experiments Parameter Settings. 

Parameter Stage-I Values Stage-II Values 

Loss Binary Cross entropy Binary Cross entropy 

Optimizer Adam Adam, RMSProp 

Activation ReLU ReLU, ELU, PReLU, Swish, Mish 

Max Epochs 50 50 

Learning Rate Scheduler Yes. Minimum LR = 0.00001, 
Maximum LR = 0.001  

Yes. Minimum LR = 0.00001  

Maximum LR = 0.001 

 

In Stage-II, we selected the top two performing models for further refinement through 
hyper-parameter tuning. This phase focused on adjusting several key parameters: (a) the learn-
ing rate, managed via a learning rate scheduler, (b) the activation functions, including ReLU, 
ELU, PReLU, Mish, and Swish, and (c) the optimizer, comparing the performance of Adam 
and RMSProp, as shown in Table 2 above. In all experimental setups (apart from the Logistic 
Regression model), we resized images to 100×100×3 pixels and applied image augmentation 
directly using TensorFlow’s functions. We used Binary cross-entropy as the loss function 
across all models. Initially, we set the training to run for 50 epochs, but we actively managed 
this using early stopping and the reduce-learning-rate-on-plateau (ReduceLRR) function. We 
set the patience threshold to 5 epochs, allowing the training process to halt or adjust if it failed 
to improve validation accuracy within this period significantly. Through empirical observa-
tion, we found that the model peaked around epoch 25, after which the network began to 
overfit. To avoid overfitting and maintain model performance, our final epoch was set to 30, 
as further training showed no significant benefits. All models were developed using the Ten-
sorflow-Keras library (in Python environment), run on a Tesla GPU. 

4.2. Experimental Results and Discussion 

In Table 3, we show the summary of Stage-I experimental results. We analyzed the per-
formance of the models on the test set while also monitoring the training accuracy in case of 
any signs of overfitting. As expected, the transfer learning models outperformed the baseline 
models. The DenseNet and EfficientNet models achieved the highest accuracy and F1 score, 
both at 99%. A graphical summary of the F1 scores across all models is shown in Fig 7. 

Training time varied significantly across the models. The Linear Perceptron, being the 
simplest, required only 3.6 seconds for training but yielded a training accuracy of just 46%, 
underscoring its limited capability in handling the complex task of polyp detection. In con-
trast, more advanced models like DenseNet121 and EfficientNetV2M demonstrated much 
higher training accuracy, though at the cost of significantly longer training times of 120 sec-
onds and 306 seconds, respectively. These results highlight the trade-off between training 
time and model performance, with more complex models requiring more time to train but 
offering superior accuracy. 

Table 3. Summary of Stage-I Experiments and Results. 

Model 
Training 

time (secs) 

Training 

accuracy 
Precision Recall F1 Score Accuracy 

Linear Perceptron 3.6 46 44 55 49 47 

Multilayer Perceptron 32.8 47 46 100 63 47 

Logistic Regression 1.6 50 53 64 39 49 

Basic CNN 30.9 75 73 73 73 73 

VGG19 161 89 87 88 87 88 

MobileNetV2 94 98 96 96 96 96 

ResNet50 130 99 98 98 98 98 

DenseNet121 120 98 99 99 99 99 

EfficientNetV2M 360 98 99 99 99 99 

 
When examining precision, recall, and F1 score, which are critical metrics for evaluating 

the efficacy of models in medical diagnosis, the differences between the models become even 
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more pronounced. The Linear Perceptron, with a precision of 44%, recall of 55%, and an F1 
score of 49%, performed poorly across the board, making it clear that this model is unsuitable 
for the task. The Multi-layer Perceptron showed a perfect recall of 100%, indicating that it 
could identify all true positives. However, its low precision of 46% resulted in an F1 score of 
63%, reflecting a high false positives rate. 

 

Figure 7. F1 Score performance of each model in Stage-I experiments. 

The Logistic Regression model performed slightly better, achieving a precision of 53% 
and a recall of 64%, but it still struggled with an overall F1 score of 39%, indicating limited 
effectiveness. The Basic CNN model showed a marked improvement, with both precision 
and recall at 73%, resulting in a balanced F1 score of 73%. This suggests that while the basic 
CNNs are effective, deeper and more sophisticated architectures are necessary for achieving 
higher accuracy and reliability in polyp detection. 

As expected, the transfer learning models all outperformed the baseline models. For 
example, the VGG19, MobileNetV2, ResNetV50, DenseNet121, and EfficientNetV2M all 
demonstrated superior performance. VGG19 achieved a precision of 87% and a recall of 
88%, leading to an F1 score of 87%. MobileNetV2, which is designed for efficiency, showed 
an impressive balance between precision and recall, both at 96%, resulting in a high F1 score 
of 96%. This makes MobileNetV2 a strong candidate for real-time applications where com-
putational efficiency is crucial. 

ResNetV50 and DenseNet121 both exhibited outstanding performance with precision 
and recall rates of 98% and 99%, respectively, and corresponding F1 scores of 98% and 99%. 
These results underscore the models' ability to detect polyps with minimal errors accurately. 
EfficientNetV2M matched DenseNet121 with 99% precision, recall, and F1 score, though it 
required the longest training time. This suggests that while EfficientNetV2M offers the high-
est accuracy, its longer training time could be a limitation in time-sensitive environments. 

In summary, the results indicate that advanced deep learning models, particularly Res-
NetV50, DenseNet121, and EfficientNetV2M, are highly effective for colorectal polyp de-
tection, offering high accuracy and balanced precision-recall trade-offs. The final choice of 
model, however, may depend on the specific requirements of the deployment environment. 
While EfficientNetV2M provides the best overall performance, its longer training time might 
make models like MobileNetV2, which is both efficient and accurate, more suitable for re-
source-constrained settings. These findings highlight the potential of deep learning models in 
improving the early detection of colorectal cancer, with DenseNet121 and EfficientNetV2M 
emerging as strong candidates for clinical deployment. 

In the Stage-II experiments, we focused on the top two models from Stage-I and tuned 
their hyperparameters to strengthen performance further. This phase was focused on opti-
mizing the choice of optimizer, activation functions, and learning rate via a learning rate 
scheduler. We did not adjust the epochs and batch size in Stage-II, as the epochs were already 
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optimized during Stage-I. Tables 4 and 5 summarize the stage-II experiments and the results 
of model performance. 

Table 4. Stage-II experiment: DenseNet121 Model. 

Optimizer Activation   
Function 

Training Accuracy Test Accuracy Test F1 Score 

 ReLU 99 99.4 99.4 

 Elu 100 99 99 

Adam PReLU 100 99.4 99.4 

 Mish 100 99.3 99.3 

 Swish 100 99 99 

 ReLU 99 99.3 99.3 

 Elu 100 99 99 

RMSProp PReLU 100 99 99 

 Mish 100 99.3 99.3 

 Swish 100 99.3 99.3 

Table 5. Stage-II experiment: EfficientNetV2M Model. 

Optimizer Activation   
Function 

Training Accuracy Test Accuracy Test F1 Score 

 ReLU 100 99 99 

 Elu 100 99 99 

Adam PReLU 100 99.4 99.4 

 Mish 99 99 99 

 Swish 100 99 99 

 ReLU 100 99.4 99.4 

 Elu 100 99.4 99.4 

RMSProp PReLU 99.8 99.4 99.4 

 Mish 99.7 99.3 99.3 

 Swish 100 99.3 99.3 

 
For DenseNet121, we experimented with two optimizers—Adam and RMSProp—com-

bined with various activation functions, including ReLU, Elu, PReLU, Mish, and Swish. We 
chose to explore Adam and RMSProp as the optimizers for hyperparameter tuning due to 
their proven effectiveness in training deep learning models as reported in the literature[1], [3], 
[12] especially in scenarios with complex datasets like medical images. Under the Adam opti-
mizer, all activation functions achieved high training accuracy, with ReLU and PReLU deliv-
ering the highest test F1 score of 99.4%, corresponding to a test accuracy of 99.4%. The 
RMSProp optimizer showed a slightly varied performance, with test F1 scores of 99% for 
ReLU and Elu, and 99.3% for PReLU, Mish, and Swish. However, the differences between 
these scores are minimal, reflecting the overall robustness of DenseNet121 across different 
configurations. Although RMSProp produced slightly lower test F1 scores than Adam, the 
difference is negligible (only 0.1%), suggesting that both optimizers are highly effective, with 
Adam offering a marginal advantage.  

The hyperparameter tuning of EfficientNetV2M followed a similar approach. The Adam 
optimizer again paired effectively with PReLU, achieving the highest test F1 score of 99.4% 
and a perfect training accuracy. ReLU, Elu, and Swish also performed strongly, each attaining 
a test F1 score of 99%, showcasing EfficientNetV2M’s reliability across various activation 
functions. With the RMSProp optimizer, Elu matched the 99.4% F1 score, while PReLU and 
Swish achieved 99.3%. As with DenseNet121, the slight variations in F1 scores between dif-
ferent configurations are minimal, indicating that EfficientNetV2M maintains strong gener-
alization across a range of hyperparameters. 

Overall, the results of the hyperparameter tuning in Stage-II experiments indicate that 
both DenseNet121 and EfficientNetV2M can achieve near-perfect performance with careful 
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selection of hyperparameters. Notably, the Adam optimizer combined with the ReLU and 
PReLU activation function for DenseNet121 produced the highest test F1 scores, meanwhile, 
the RMSProp optimizer combined with ReLU, Elu, and PReLU had the highest test F1 scores 
for EfficientNetV2M. This suggests that both models can perform exceptionally well under 
various configurations, but the minor differences observed, particularly in test F1 scores, 
highlight the importance of hyperparameter tuning in achieving optimal model performance. 
However, overall, the EfficientNetV2M model, with its consistently highest three activations 
under RMSProp optimizer (compared to the rest), reaffirmed its robustness.  

Given these results after the two-stage experiments, EfficientNetV2M, with RMSProp 
optimizer and ReLU activation function emerged as our final model. But again, overall, the 
result shows that these two models are competitive, and the eventual choice will depend on 
the computational resources available at the point of deployment. This is due to the fact that 
the Stage-I result indicates that DenseNet's architecture is optimized for speed, resulting in 
faster training times. On the other hand, EfficientNet's architecture is geared towards accu-
racy optimization. 

4.3. Impact of Stage-II Tuning 

Stage-II tuning focused on optimizing specific hyperparameters such as the optimizer 
and activation functions for DenseNet121 and EfficientNetV2M. This stage provided a crit-
ical opportunity to refine the already strong models and push their performance slightly 
higher, specifically focusing on F1 score optimization, which is crucial in medical diagnostics 
where precision and recall are paramount. 

The impact of Stage-II is particularly evident when examining the test F1 scores and 
training accuracies. While the Stage-I results already had DenseNet121 and EfficientNetV2M 
performing at a near-perfect level, Stage-II tuning allowed for a more nuanced exploration of 
hyperparameter settings. For instance, under Stage-II results in Table 4 and Table 5, we ob-
served that the Adam and RMSprop optimizers combined with the PReLU activation func-
tion consistently yielded a test F1 score of 99.4% for both models, slightly edging out their 
Stage-I counterparts. These marginal gains might appear small, but they are significant in a 
clinical context where the highest possible accuracy is critical to patient outcomes. 

Moreover, the Stage-II experiments confirmed the robustness of these models under 
various configurations, providing evidence that certain combinations of hyperparameters (like 
RMSProp with Elu or ReLU) can slightly improve model generalization without sacrificing 
training accuracy. The ability to fine-tune and achieve even minimal improvements highlights 
the critical role of hyperparameter optimization in leveraging the full potential of advanced 
models like DenseNet121 and EfficientNetV2M. 

In summary, while Stage-I established a strong baseline, Stage-II fine-tuning was essen-
tial in squeezing out the last bit of performance from the models, ensuring that they are not 
only accurate but also well-tuned for generalization across diverse scenarios. This two-stage 
approach underlines the importance of iterative refinement in machine learning pipelines, 
especially in high-stakes applications such as medical diagnostics. 

5. Comparison 

With the EfficientNetV2M as our final model, which achieved both test F1 score and 
an accuracy of 99.4%, we demonstrated significant advancements in the task of colorectal 
cancer detection. As shown in Table 6, the performance of this model not only meets but 
surpasses the results of many existing works in the domain, highlighting the effectiveness of 
our approach. 

Traditional machine learning models, such as SVMs and RFs, have been widely used in 
previous studies for polyp detection. For example, [28] achieved an accuracy of 72% using an 
SVM-based model that combined multiple features such as texture, shape, and color. Alt-
hough effective, these models required manual feature extraction, making them less adaptable 
and scalable. 

Similarly, [29] employed a Random Forest classifier to analyze colonoscopy images, 
achieving an accuracy of approximately 83%. While RFs can handle variability in polyp ap-
pearance, they still fall short of the generalization capabilities seen in deep learning models 
like EfficientNetV2M. Another study by [46] utilized a cascade of classifiers, including SVMs 
and decision trees, achieving an accuracy of 88%. This approach involved complex feature 
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engineering and model stacking, yet it did not reach the performance levels that our deep 
learning model could achieve with automated feature extraction. Furthermore, [47] explored 
a hybrid model combining Bayesian networks with traditional classifiers, achieving an accu-
racy of 84.5%. 

Table 6. Comparison of our work with existing methods. 

Existing Works Method Accuracy 

Sasmal et al. [28] SVM 72 

Grosu et al. [29] Random Forest 83 

Tajbakhsh et al. [46] Cascade of Classifiers (SVM, Decision Trees) 88 

Dehghani et al.[47] Hybrid Model (Bayesian Networks + Classifiers) 84.5 

Ellahyani et al. [30] Deep CNN 91 

Urban et al. [48] CNN in Real-time Colonoscopy 96.4 

Öztürk & Özkaya [49] CNN + LSTM 97.9 

Ours Deep + Transfer Learning: EfficientNetV2M 99.4 

 

Despite these efforts, traditional models like these are often limited by the quality of 
manually extracted features and do not match our model's F1 score of 99.4%, which benefits 
from end-to-end learning capabilities. Furthermore, several CNN-based learning approaches 
in literature have shown promising results in polyp detection but were limited by their archi-
tectural simplicity. For example, [30] reported a deep CNN model achieving an accuracy of 
91%. However, this performance still lags behind the results of more advanced models like 
ours, EfficientNetV2M. The authors of [48] also took a significant step by integrating a CNN-
based system into real-time colonoscopy procedures, achieving an accuracy of 96.4%. This 
model was a considerable advancement, but our EfficientNetV2M model surpasses it with a 
higher F1 score, indicating better precision and recall balance. Another notable study by [49] 
employed a CNN with a Long Short-Term Memory (LSTM) network to analyze colonoscopy 
videos, achieving an accuracy of 97.9%. While this approach combined spatial and temporal 
features, it still fell short of the 99.4% accuracy achieved by our method, which demonstrates 
superior performance in static image analysis.  

Finally, regarding clinical applicability, the high F1 score of 99.4% of our final model 
underscores its reliability in clinical settings, where the cost of misclassification is often high. 
Compared to existing works, which often tradeoff between precision and recall, our model’s 
balanced performance ensures that clinicians can trust the results for making critical decisions 
during colonoscopy procedures. 

6. Conclusion, Limitations, and Future Work 

In this study, we have presented a comprehensive approach to early detection of colo-
rectal cancer using advanced deep learning techniques. We evaluated various models through 
a series of experiments, ranging from traditional machine learning algorithms to state-of-the-
art deep learning architectures. Among these, EfficientNetV2M emerged as the top per-
former, achieving a high test F1 score of 99.4%. This model demonstrated not only superior 
accuracy but also a balanced performance across precision and recall, making it highly reliable 
for clinical applications. The results of our work highlight the significant advancements that 
can be achieved through the application of deep learning in medical image analysis, particu-
larly in improving diagnostic accuracy and patient outcomes in real-world medical settings. 

While our study has shown remarkable results, several limitations should be acknowl-
edged. The current study relied on a relatively limited dataset for training and validation, 
which could affect the model's generalizability across different clinical settings. Additionally, 
our model was tested primarily on static images, which may not fully capture the complexity 
and variability encountered in real-time diagnostics, such as video endoscopy procedures. 

To further enhance and extend the capabilities of our approach, we propose the follow-
ing directions for future research: 1) Expanding Dataset Diversity: One of the limitations of 
the current study is the reliance on limited datasets for training and validation due to the 
expensive nature of acquiring and labeling medical datasets. Our future work will focus on 
incorporating a more diverse set of images from different populations, sources, and imaging 
conditions. This will help further improve the model's generalizability across various clinical 
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settings and patient demographics. 2) Integration with Video Analysis: Extending the current 
model to handle video data rather than only static images could significantly enhance its utility 
in real-time diagnostics. We will explore this to capture temporal information in video streams 
and further guarantee high detection accuracy in dynamic scenarios. 3) Exploring Hybrid Ap-
proaches: Our future research will also explore hybrid models that combine the strengths of 
EfficientNetV2M with other architectures, such as Transformer models or ensemble meth-
ods. This could lead to further improvements in robustness, particularly in challenging cases 
where polyps are difficult to detect. 

In conclusion, our study has demonstrated the potential of deep learning and transfer 
learning as a robust method to develop effective and accurate diagnostic tools for polyp de-
tection, as part of efforts to prevent colorectal cancer – setting a new benchmark in the task. 
Furthermore, by addressing our outlined areas for future work, we can continue to push the 
boundaries of what's possible in medical image analysis, ultimately contributing to better pa-
tient care and outcomes through deep learning in artificial intelligence. 
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