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Abstract: Malaria continues to pose a significant global health threat, and the emergence of drug-

resistant malaria exacerbates the challenge, underscoring the urgent need for new antimalarial drugs. 

While several machine learning algorithms have been applied to quantitative structure-activity relation-

ship (QSAR) modeling for antimalarial compounds, there remains a need for more interpretable mod-

els that can provide insights into the underlying mechanisms of drug action, facilitating the rational 

design of new compounds. This study develops a QSAR model using Light Gradient Boosting Machine 

(LightGBM). The model is integrated with SHapley Additive exPlanations (SHAP) to enhance inter-

pretability. The LightGBM model demonstrated superior performance in predicting antimalarial activ-

ity, with an ac-curacy of 86%, precision of 85%, sensitivity of 81%, specificity of 89%, and an F1-score 

of 83%. SHAP analysis identified key molecular descriptors such as maxdO and GATS2m as significant 

contributors to antimalarial activity. The integration of LightGBM with SHAP not only enhances the 

predictive ac-curacy of the QSAR model but also provides valuable insights into the importance of 

features, aiding in the rational design of new antimalarial drugs. This approach bridges the gap between 

model accuracy and interpretability, offering a robust framework for efficient and effective drug dis-

covery against drug-resistant malaria strains. 
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1. Introduction 

Malaria is a serious infectious disease that affects red blood cells. It is caused by the 
parasite Plasmodium falciparum and is transmitted through the bite of female Anopheles mosqui-
toes [1]. Between 2000 and 2020, an estimated 1.7 billion malaria cases and 10.6 million ma-
laria-related deaths occurred globally [2]. Reports from the Centers for Disease Control and 
Prevention (CDC) indicate the emergence of drug-resistant malaria cases, posing a significant 
threat to malaria control and leading to increased morbidity and mortality rates [3]. The high 
incidence of malaria and the occurrence of drug resistance highlight the urgent need for new 
drug candidates [4].  

High-throughput screening (HTS) is a commonly used method to discover new drug 
candidates; however, it is time-consuming, costly, and has a low hit rate [5], [6]. An alternative 
approach to discovering new drug compounds is using quantitative structure-activity relation-
ship (QSAR) models. These models leverage machine learning and statistical techniques to 
identify the relationship between the chemical structure of a compound and its biological 
activity [7]–[9]. By training algorithms on datasets of known compounds and their activities, 
QSAR models can predict the efficacy of new compounds. This in-silico method allows re-
searchers to computationally screen and prioritize candidate compounds with desired biolog-
ical activities, significantly reducing the need for extensive in vivo testing [10], [11]. The 
QSAR-based selection process is highly efficient, offering rapid and accurate predictions with 
a high hit rate [12]. 

In recent years, machine learning has revolutionized the QSAR methodology, offering 
enhanced capabilities in predicting the biological activities of compounds based on their 
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chemical structures [13], [14]. Advanced machine learning algorithms, such as random forests, 
support vector machines, and deep learning models, have demonstrated superior perfor-
mance in identifying potential drug candidates with higher accuracy and efficiency than tradi-
tional QSAR approaches [15]–[17]. These algorithms can handle large datasets, uncover com-
plex patterns, and improve the predictive power of QSAR models, thereby accelerating the 
drug discovery process and addressing the challenges posed by drug-resistant malaria. 

One popular method for building robust QSAR models is gradient boosting, which has 
gained significant traction due to its high predictive performance and efficiency. Among var-
ious gradient boosting frameworks, LightGBM (Light Gradient Boosting Machine) stands 
out for its speed and accuracy [18], [19]. LightGBM is designed to handle large-scale data with 
lower memory usage and faster training times, making it particularly suitable for high-through-
put QSAR applications. Its effectiveness in capturing intricate patterns within the data and its 
scalability makes it an excellent choice for drug discovery [20]. 

An interpretable approach in machine learning for QSAR is particularly valuable, as it 
allows researchers to understand the underlying mechanisms driving the predictions and make 
informed decisions [21]. Interpretable models provide insights into which chemical features 
are most influential in determining biological activity, facilitating the design of new com-
pounds with optimized properties [22]. This transparency enhances trust in the model's pre-
dictions and aids in the rational design of drugs, ultimately leading to more effective and 
targeted malaria treatments. 

The primary aim of this study is to develop a robust and interpretable machine learning-
based QSAR model to predict the antimalarial activity of chemical compounds. By integrating 
state-of-the-art machine learning techniques focusing on interpretability, this study seeks to 
identify novel drug candidates that are effective against Plasmodium falciparum, including drug-
resistant strains. Additionally, the study aims to provide a framework for understanding the 
relationship between chemical structures and their antimalarial properties, thereby contrib-
uting to the rational design of new antimalarial drugs. 

The contributions of this study are as follows: 

• We developed an advanced QSAR model using LightGBM, focusing on interpretability 
to provide clear insights into the model's decision-making process. 

• Through SHAP analysis, we identified critical molecular descriptors that significantly 
contribute to antimalarial activity, aiding in the rational design of new compounds. 

• Our model successfully predicted potential new drug candidates that are effective against 
Plasmodium falciparum. 

• We established a robust framework for integrating machine learning and QSAR meth-
odologies in drug discovery, enhancing the efficiency and accuracy of identifying prom-
ising drug candidates. 
This paper is structured as follows: Section 2 reviews related works, providing an over-

view of existing QSAR methodologies and the application of machine learning in drug dis-
covery, with a particular focus on antimalarial compounds. Section 3 details the methodology 
used in this study, including data collection, feature extraction, model development using 
LightGBM, and the interpretability techniques employed. Section 4 presents the results and 
discussion, showcasing the performance of the developed QSAR model, key findings, and 
their implications for antimalarial drug discovery. Finally, Section 5 concludes the paper, sum-
marizing the main contributions and highlighting the study's potential impact. 

2. Related Work 

The integration of machine learning into QSAR modeling has significantly advanced the 
field of computational drug discovery. Traditional QSAR methods relied on linear regression 
and simple statistical techniques and often fell short in capturing the complex relationships 
between chemical structures and their biological activities [23]. The advent of machine learn-
ing has addressed these limitations by introducing non-linear models capable of handling 
high-dimensional data and uncovering intricate patterns.  

The application of machine learning-based QSAR models in malaria research has shown 
promising results in identifying potential antimalarial compounds. Given the urgent need for 
new treatments due to the rise of drug-resistant strains of Plasmodium falciparum, researchers 
have increasingly turned to advanced computational techniques. Studies have utilized various 
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machine learning algorithms to build QSAR models that predict the efficacy of chemical com-
pounds against malaria. For instance, Azmi et al. [24] utilized genetic algorithms and artificial 
neural networks (ANN) to predict the activity of 61 fusidic acid compounds as antimalarial 
agents, achieving accuracies of 0.96 and 0.92 based on training and test data evaluations, re-
spectively. Similarly, Egieyeh et al. [25] classified 1155 antimalarial compounds using naïve 
Bayes, support vector machine (SVM), and voted perceptron methods, with SVM yielding 
the highest accuracy of 0.85 on test data. Additionally, Danishuddin [26] employed several 
methods including XGBoost, SVM, k-Nearest Neighbors (KNN), and random forest to pre-
dict 4750 antimalarial compounds, demonstrating that XGBoost achieved high classification 
performance with an accuracy of 0.86 and an AUC of 0.91 on test data. Furthermore, Mswa-
hili et al. developed five machine learning models to predict antimalarial bioactivities of a drug 
against Plasmodium falciparum, with XGBoost achieving an accuracy of 83% [27]. 

Moreover, studies have explored combining machine learning with traditional 
cheminformatics techniques to enhance the interpretability of QSAR models. Daoui et al. [28] 
integrated machine learning models with molecular docking simulations and absorption, dis-
tribution, metabolism, excretion and toxicity (ADMET) properties in silico studies to predict 
potent anti-tumor agents, providing interpretable insights into compound efficacy and safety. 
Ashraf et al. [29] combined machine learning with 3D QSAR, molecular docking, and dynam-
ics simulations studies to model and design TTK inhibitors, offering an interpretable frame-
work for understanding the molecular interactions and dynamics of potential drug candidates. 

Despite these advancements, there remains a need for the development of more sophis-
ticated and interpretable models. This would not only enhance the predictive accuracy but 
also provide deeper insights into the underlying mechanisms of drug action, thereby facilitat-
ing the discovery of novel antimalarial compounds. 

3. Proposed Method 

3.1. Dataset 

This study utilized a dataset obtained from the research conducted by Danishuddin et 
al. [26]. The dataset consists of 4750 compound samples, each labeled as active or inactive. 
Each compound is represented by 98 molecular descriptors, which are quantitative represen-
tations of molecular properties [30], used as features for model construction. This dataset was 
selected due to its comprehensive representation of molecular properties and the balanced 
nature of its labels, making it highly suitable for building and evaluating predictive models. 
Detailed information about the dataset can be found in the original paper by Danishuddin et 
al. [26]. 

Figure 1 depicts the visualization of compound distribution with active and inactive clas-
ses using principal component analysis (PCA). It can be observed that the data cannot be 
linearly separated, and samples from both classes overlap and are difficult to distinguish, pos-
ing a challenge in the model training process. 

 

Figure 1. Visualization of compound distribution for active and inactive classes using PCA. 
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3.2. Data Preprocessing 

For preprocessing, we standardized the molecular descriptors by removing the mean and 
scaling to unit variance to ensure that all features contribute equally to the model and to 
improve the convergence of gradient-based optimization algorithms [31], [32]. The active and 
inactive labels were encoded into numerical values. Then, the dataset was divided into two 
subsets: 80% for training data and 20% for testing data [33]. The class distribution in each 
subset is presented in Table 1. 

Table 1. Hyperparameter search space and selected values for tuning. 

Subset Class Samples Percentages (%) 

Training 
Active 1673 43.04 

Inactive 2214 56.96 

Testing 
Active 375 43.45 

Inactive 488 56.55 

3.3. Model Training 

This study proposes a machine learning-based QSAR model utilizing LightGBM for its 
high predictive performance and efficiency. LightGBM is particularly suited for high-dimen-
sional datasets due to its fast-training speed and low memory usage [34], [35]. We chose 
LightGBM over deep learning models such as LSTM and GRU because, although deep learn-
ing models are powerful, they are typically more computationally intensive and require larger 
datasets to achieve optimal performance. Recent studies have also found that gradient boost-
ing models perform better than deep learning models for tabular machine learning tasks. The 
overall workflow of our proposed approach, including data preprocessing, model training, 
hyperparameter optimization, and interpretability analysis, is visualized in Figure 2. 

 

Figure 2. Workflow of the proposed approach. 

The objective function optimized by LightGBM for binary classification is the binary 
log loss, defined as shown in Equation 1: 

𝐿(𝑦, 𝑦̂) = −
1

𝑁
∑[𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 (1) 

where 𝑦𝑖 is the true label, 𝑦𝑖̂ is the predicted probability, and 𝑁 is the number of samples. 
 

To optimize the performance of the LightGBM model, we employ Optuna, an automatic 
hyperparameter optimization software framework. Optuna uses a Bayesian optimization ap-
proach to efficiently search for the best hyperparameter values [36]. This method balances 
exploration and exploitation, allowing for a more efficient search compared to traditional 
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methods. Optuna’s versatility in defining complex search spaces and its support for various 
samplers make it a powerful tool for hyperparameter tuning [37]. 

The specific hyperparameter search space and the selected values for tuning are outlined 
in Table 2. This table details the range of values considered for each hyperparameter and the 
optimal values determined through the tuning process. 

Table 2. Hyperparameter search space and selected values for tuning. 

Hyperparameter Search Space 

num_leaves Integer between 2 and 256 

learning_rate Log-uniform distribution between 0.005 and 0.5 

feature_fraction Uniform distribution between 0.1 and 1.0 

bagging_fraction Uniform distribution between 0.1 and 1.0 

bagging_freq Integer between 1 and 10 

min_child_samples Integer between 5 and 100 

3.4. Performance Evaluation 

To evaluate the performance of our proposed LightGBM-based QSAR model, we utilize 
several common metrics in binary classification: accuracy, precision, sensitivity (recall), spec-
ificity, and F1-score [38]–[40]. These metrics provide a comprehensive assessment of the 
model's predictive capabilities, particularly to identify active and inactive compounds: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

F1-Score = 2 ⋅
Precision ⋅ Sensitivity

Precision + Sensitivity
 (6) 

where TP is the number of true positives, TN is the number of true negatives, FP is the 
number of false positives, and FN is the number of false negatives [41]. 

In addition to evaluating the LightGBM model, we also compared our approach with 
other machine learning methods, including XGBoost, Random Forest, k-Nearest Neighbors 
(KNN), and Logistic Regression [42]–[44]. These comparisons will help benchmark our pro-
posed model's performance against established algorithms and provide a comprehensive un-
derstanding of its strengths and weaknesses in predicting antimalarial activity. 

3.5. SHAP Analysis 

To enhance the interpretability of our model, we integrate SHAP (SHapley Additive 
exPlanations) values, which provide insights into the contributions of individual features to 
the model's predictions [45], [46]. SHAP provide a unified measure of feature importance. 
SHAP values are derived from cooperative game theory and provide insights into the contri-
bution of each feature to the model's predictions [47], [48]. 

Due to several key advantages, we selected SHAP over other interpretability methods 
such as Local Interpretable Model-agnostic Explanations (LIME), Permutation Feature Im-
portance, and Partial Dependence Plots (PDP). SHAP provides a consistent and theoretically 
sound approach to feature attribution by ensuring that the contributions of features are fairly 
distributed according to their marginal contributions across all possible feature subsets [49]. 
This property makes SHAP particularly robust for capturing the interactions between features 
and their impact on predictions [50]. In contrast, LIME provides local approximations of 
model behavior but may lack consistency across different local regions of the feature space. 
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Permutation Feature Importance and PDP offer valuable insights but can be less robust in 
capturing feature interactions and may not be as effective in explaining complex models com-
prehensively [51], [52]. 

The integration of LightGBM with SHAP not only enhances the predictive power of 
our QSAR model but also ensures that the model remains interpretable, allowing researchers 
to make informed decisions based on the model's output. This approach bridges the gap 
between model accuracy and interpretability, providing a robust framework for the discovery 
of new antimalarial drug candidates. 

4. Results and Discussion 

The hyperparameter optimization process using Optuna yielded the best set of hyperpa-
rameters for the LightGBM model. The optimal values identified were as follows: the number 
of leaves was set to 175, the learning rate was 0.104, the feature fraction was 0.806, the bagging 
fraction was 0.978, the bagging frequency was 5, and the minimum number of child samples 
was 17. These parameters were used to train the final QSAR model for predicting the anti-
malarial activity of chemical compounds. 

Table 3. Performance comparison of machine learning models. 

Model 
Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

(%) 

LightGBM 86 85 81 89 83 

XGBoost 83 83 78 88 80 

Random Forest 83 86 72 91 78 

KNN 65 61 58 72 59 

Logistic Regression 69 70 49 84 57 

 
Table 3 presents the performance metrics for the LightGBM model, showcasing its clear 

superiority over other machine learning models. The LightGBM model achieved an accuracy 
of 86%, significantly higher than XGBoost (83%), Random Forest (83%), KNN (65%), and 
Logistic Regression (69%), indicating its exceptional ability to classify active and inactive com-
pounds correctly. The model's precision is 85%, meaning a high proportion of true positive 
predictions, which is comparable to Random Forest's 86% but better than XGBoost (83%), 
KNN (61%), and Logistic Regression (70%). 

The sensitivity of the LightGBM model is 81%, superior to XGBoost (78%), Random 
Forest (72%), KNN (58%), and Logistic Regression (49%). This high sensitivity ensures that 
active compounds are effectively identified, reducing the risk of false negatives. The 
LightGBM model also demonstrated a high specificity of 89%, slightly lower than Random 
Forest (91%) but higher than XGBoost (88%), KNN (72%), and Logistic Regression (84%), 
which is crucial for minimizing false positives. The F1-score, which balances precision and 
recall, was highest for the LightGBM model at 83%, surpassing XGBoost (80%), Random 
Forest (78%), KNN (59%), and Logistic Regression (57%), further highlighting its overall 
effectiveness. 

The superior performance of the LightGBM model can be attributed to its ability to 
handle the nonlinearity of data. LightGBM's gradient boosting framework effectively com-
bines multiple weak learners to form a strong predictive model, allowing it to manage high-
dimensional data and complex relationships between chemical structures and their biological 
activities. In contrast, models like KNN and Logistic Regression struggled due to these com-
plexities. KNN, with its simplistic approach of classifying based on nearest neighbors, failed 
to capture the intricate patterns, resulting in low accuracy (65%) and high misclassification 
rates. Similarly, Logistic Regression, a linear model, could not handle the nonlinear relation-
ships within the dataset, leading to the lowest sensitivity (49%) and a high number of false 
positives and false negatives. 
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(d) 

 
(e) 

Figure 3. Confusion matrix (a) LightGBM, (b) XGBoost, (c) Random Forest, (d) KNN, (e) Logistic 
Regression. 

The confusion matrices reveal valuable insights into the performance of different models 
in classifying active and inactive compounds. The LightGBM model, depicted in Figure 3a, 
stands out with 325 true positives and 492 true negatives, showcasing its high accuracy in 
correctly identifying compounds. Its low numbers of false positives (88) and false negatives 
(45) further emphasize its robustness and ability to minimize errors. In comparison, the 
XGBoost model (Figure 3b) shows good performance but has slightly more false positives 
(90) and false negatives (67), making it less accurate than LightGBM and more likely to miss 
active compounds. The Random Forest model (Figure 3c) has a similar true negative count 
(488) but higher false positives (115) and slightly fewer false negatives (49), indicating a more 
conservative approach with increased false positives. The KNN model, shown in Figure 3d, 
exhibits significant misclassification with high false positives (175) and false negatives (153), 
proving less effective for this task due to its sensitivity to overlapping data and inability to 
capture complex patterns. Logistic Regression (Figure 3e) also struggles, with 201 true posi-
tives and 451 true negatives, and the highest false positives (212) and substantial false nega-
tives (86), indicating its inadequacy in handling the dataset's complexity. The LightGBM 
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model's superior performance in minimizing misclassification makes it the most effective 
model for predicting antimalarial activity in this study. 

Figure 4 shows the Receiver Operating Characteristic (ROC) curves for the different 
machine learning models and provide insights into their performance in predicting the anti-
malarial activity of chemical compounds by plotting the true positive rate (sensitivity) against 
the false positive rate (1 - specificity) for various thresholds. The ROC curve for the 
LightGBM model (blue line) demonstrates superior performance with the highest area under 
the curve (AUC) value of 0.92, indicating its excellent ability to discriminate between active 
and inactive compounds. XGBoost (orange line) follows closely with an AUC of 0.91, show-
ing strong performance but slightly less than LightGBM. The Random Forest model (green 
line) also has an AUC of 0.91, suggesting comparable effectiveness to XGBoost. In contrast, 
the KNN model (red line) exhibits a significantly lower AUC of 0.67, reflecting poor perfor-
mance and a higher misclassification rate. Logistic Regression (purple line) has an AUC of 
0.70, which is better than KNN but still considerably lower than LightGBM, XGBoost, and 
Random Forest, indicating moderate performance and limitations in capturing dataset com-
plexities. 

 

Figure 4. ROC curves for different machine learning models. 

Furthermore, we performed SHAP analysis to interpret the LightGBM's predictions and 
identify the most influential molecular descriptors. Figure 5 illustrates the top 10 most im-
portant molecular descriptors based on their mean absolute SHAP values, which indicate their 
average impact on the model's output. The most important descriptor is maxdO, which has 
the highest SHAP value, suggesting it has the greatest influence on the model's predictions. 
This descriptor likely captures a critical structural or chemical property relevant to antimalarial 
activity. The second most important descriptor, GATS2m, also significantly impacts the mod-
el's predictions, albeit to a lesser extent than maxdO. This descriptor might be associated with 
specific molecular interactions or properties crucial for distinguishing active compounds. 
While still influential, the tenth most important descriptor, SpMax5_Bhs, has a smaller SHAP 
value than the top descriptors, indicating a relatively lower but still meaningful contribution 
to the model's decision-making process. The combined insights from these descriptors help 
us understand the underlying factors driving the LightGBM model's high predictive accuracy. 
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Figure 5. Top 10 most important molecular descriptors based on their mean absolute SHAP values 
using the LightGBM model. 

 

Figure 6. SHAP beeswarm plot showing the importance and impact of various molecular descriptors 
in predicting the antimalarial activity of compounds using the LightGBM model. 

Figure 6 presents a SHAP beeswarm plot, which provides a detailed visualization of 
various molecular descriptors' importance and impact in predicting compounds' antimalarial 
activity using the LightGBM model. Each dot in the plot represents a SHAP value for a spe-
cific feature, color-coded by the feature's value (with high values in red and low values in 
blue). This type of plot allows for a nuanced understanding of how each feature affects indi-
vidual predictions. For example, the feature maxdO shows the highest SHAP values, indicat-
ing it significantly influences the model's predictions, with higher values (red) generally in-
creasing the predicted antimalarial activity. Conversely, GATS2m has a more balanced distri-
bution of high and low values, suggesting a more complex relationship with the model's out-
put. Other features like MATS4c, ETA_BetaP_ns_d, and SssO also demonstrate significant 
impacts, each with distinct influence patterns. The beeswarm plot's ability to show the distri-
bution and variability of feature impacts, as well as the interaction between different feature 
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values, complements the bar plot shown in Figure 5, which ranks features based on their 
average absolute SHAP values. While the bar plot provides a clear and straightforward rank-
ing of feature importance, the beeswarm plot offers deeper insights into features' contextual 
and interaction effects on model predictions. 

To further validate our findings, we compared our results with a previous study by Dan-
ishuddin et al. and found that while both studies achieved the same accuracy (86%), our study 
achieved a higher AUC (92%) compared to the previous AUC (91%). Although the improve-
ment in AUC is not substantial, it indicates a better overall model performance in distinguish-
ing between active and inactive compounds. Additionally, our LightGBM model is interpret-
able with SHAP, providing insights into the contribution of each feature to the model's pre-
dictions, which is crucial for understanding the underlying mechanisms of antimalarial activ-
ity. 

The results of this study demonstrate the effectiveness of integrating LightGBM with 
SHAP for developing an interpretable QSAR model to predict the antimalarial activity of 
chemical compounds. The superior performance of the LightGBM model, as evidenced by 
its high accuracy, precision, sensitivity, specificity, and F1-score, underscores its robustness 
in handling high-dimensional data and complex relationships between molecular descriptors 
and biological activity. The use of SHAP values provides valuable insights into the importance 
of features and the contribution of individual descriptors. 

However, this approach has several limitations. First, while SHAP enhances interpreta-
bility, it does not inherently address model biases or data quality issues, which can affect pre-
dictions. Second, relying on a static dataset limits the model's ability to generalize to new, 
unseen compounds, highlighting the need for continuous model validation and updating with 
diverse and larger datasets. Third, the computational complexity of hyperparameter tuning 
with Optuna and interpreting SHAP values can be resource-intensive, necessitating robust 
computational infrastructure and expertise. Future work should focus on addressing these 
limitations by exploring transfer learning techniques, expanding the dataset with new com-
pounds, and optimizing computational resources to streamline model training and interpre-
tation processes. This would further enhance the model's applicability and reliability in the 
drug discovery process, paving the way for more efficient and effective identification of anti-
malarial candidates. 

6. Conclusions 

This study presents a robust and interpretable machine learning-based QSAR model us-
ing LightGBM to predict the antimalarial activity of chemical compounds against Plasmodium 
falciparum. The LightGBM model achieved an accuracy of 86%, precision of 85%, sensitivity 
of 81%, specificity of 89%, and an F1-score of 83%, significantly outperforming other models 
like XGBoost and Random Forest. By integrating SHAP values, we provided a detailed un-
derstanding of the importance of features, aiding in the rational design of new antimalarial 
drugs. This study establishes a robust framework for integrating machine learning with QSAR 
methodologies, bridging the gap between predictive accuracy and interpretability. This ap-
proach not only accelerates the drug discovery process but also provides a clear pathway for 
developing new antimalarial drugs, including those targeting drug-resistant malaria strains. 
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