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Abstract: Designing and validating structural causal model (SCM) correctness from a dataset whose 

background knowledge is obtained from a research process is not a common phenomenon. Studies 

have shown that in many critical areas, such as healthcare and education, researchers develop models 

from direct acyclic graphs (DAG), a component of an SCM, without testing them. This phenomenon 

is worrisome and is bound to cast a shadow on the inference estimates that may arise from such models. 

In this study, we have designed a novel application-based SCM for the first time using the background 

knowledge obtained from the Early Grade Reading Assessment (EGRA) program called the 

Strengthen Education in Northeast Nigeria (SENSE-EGRA), which is an educational intervention 

program of the American University of Nigeria (AUN), Yola, on the letter identification subtask. This 

project was sponsored by the United States Agency for International Development (USAID). We em-

ployed the conditional independence test (CIT) criteria for the validation of the SCM’s correctness, 

and the results show a near-perfect SCM. 

Keywords: Structural causal models; Casal validation; Conditional independent test; Observational da-

tasets; EGRA. 

 

1. Introduction 

From time immemorial till date, human actions, processes, and indeed scientific explo-
rations have been predicated on the premise of cause and effect. In the primordial era, the 
savaged and primitive man sought ways to articulate and uncover this phenomenon of cause 
and effect; and not having equipment, enough facts, or the sine-quo-non to ascertain this 
phenomenon of knowing what actions (causes) that produces the effects especially in inci-
dences that were agonizing to him such as certain ebullitions of some sicknesses concomitant 
with mysterious deaths. Thus, the ability to know the right action to influence his environ-
ment or predict his future made man an idiosyncratic species from the rest of the animals. 
This, drove the savaged man from his initial state of higgledy-piggledy to embrace the practice 
of magic, astrology, and certain fetish ways to achieve the causation phenomenon to over-
come his bewildered state. Gradually, as societies evolved and advanced, mankind himself 
advanced from the primitive and savaged state to the current state of scientific and techno-
logical advancement of today's world. Thus establishing his hegemony on earth over and 
above every other species. Thus, the same motives of trying to influence his environment and 
predict his future still stand. Nonetheless, the methods of achieving it have evolved; as magic 
arts wanes to scientific logic, and astrology metamorphosed into astronomy and other tech-
nological innovations such as computer predictions, simulations, etc., became the modern 
genies that are aberrations from the fetish ways of predicting the future. Albeit, in this current 
era, the science of trying to ascertain causality or causation in human processes and actions is 
still a daunting and nontrivial task. The traditional scientific way of ascertaining this act is 
resident with the randomized controlled experiment or randomized controlled trial (RCT) 
method. This RCT method and idea is credited to Fisher [1]. Thus, this standard framework 
for causal discovery known as RCT always involves setting some (usually half) of the sampled 
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population of study and giving them a treatment (an intervention) under the same conditions, 
while the second half of the study population is left untreated (not intervened on) or con-
trolled under the same or similar conditions. This approach helps to slay any possible con-
founding or lurking variable, which is often the factor that jeopardizes a proper juxtaposition 
of these two sampled populations in the RCT experiments. As fascinating as this method of 
RCT is, some events and circumstances make this kind of experiment too expensive, infeasi-
ble, or even unethical to perform. A good instance is to perform an RCT on a hypothesized 
query that seeks to uncover the health benefits or otherwise of smoking on a certain popula-
tion. This is an unethical experiment to conduct under RCT because it would involve setting 
half of the population under review to smoke (treated) and the others not to smoke (con-
trolled). Hence, with this obstacle posed by RCT, many researchers have resorted to the dis-
covery and inferring of causality from purely observational datasets (using SCM or the poten-
tial outcome (PO) framework), or a combination of both data and RCT [2, 3]. These frame-
works (SCM & PO) have techniques that simulate RCT by dealing with the issues of con-
founding and selection biases in order to infer causality from observational datasets. 

However, despite the successes recorded by causal models using observational datasets, 
many SCM designs are not tested or validated for correctness as far as the extant literature 
would reveal. A recent study by Tennant et al. [4], which investigated SCM DAG testing in 
the healthcare sector, evinced that among the 200 articles reviewed that relates to SCM design, 
not a single one of them was tested or validated for correctness.  Thus, if these models are 
to be further used in the estimation or evaluation of causal inference of such projects, the 
estimation results may leave a lot of room for dispute and doubt over the issue of effectively 
dealing with confounding bias. Thus, the purpose of having a well-designed and validated 
SCM includes [5-8]: (i) A well-designed and validated direct acyclic graph (DAG) formation 
for an SCM is a perfect representation of the data-generating process of an intervention pro-
gram and this process is further employed in the estimation of the intervention effects for the 
intervention program (ii) an SCM with correct DAG formation will help in the identification 
of the right structural equations and covariates set to perform adjustment on to effectively 
handle the issue of confounding bias in the dataset during inference or impact estimation. 
Thus, a wrong SCM will have incorrect DAG formation and lead to the identification of the 
wrong set of structural equations and covariates set to perform adjustment on, and concom-
itantly bring about a biased estimation of the impact estimation for the intervention program, 
(iii) Finally, any inference estimates from an incorrect DAG formation for an SCM, repre-
senting an intervention dataset is not free of confounding and selection biases. Overall, it is 
worthy of note that all dataset analysis without an SCM DAG formation can only reveal as-
sociation (or correlation), and these correlations are sometimes casual in nature while at other 
times, they are completely spurious. In the case where the relations between variables are 
spuriously correlated, it is the correct DAG formations of the variables involved that can 
identify which variable is a confounder (the one bringing about the spurious relations). And 
when the confounding variable is identified and removed or adjusted upon, the spurious re-
lationship is severed. Take, for instance, scenario A, where ice cream sales have a positive 
correlation with high temperature. That is, the higher the temperature, the more sales that are 
recorded with ice cream. In scenario B, where electricity prices have a positive correlation 
with temperature. That is, the higher the temperature, the more prices one pays for electricity 
and the verse-verse. In scenario A, the correlation seems causal in nature, while in scenario B 
it is completely spurious. If one collects data on these three variables for each of the scenarios, 
i.e., ice-cream quantity supplied (let’s call it X), ice-cream sales prices (let’s call it Y), temper-
ature of the day (let’s call it Z) in the case of scenario A. 

Similarly, in scenario B, we collect data for electricity consumption (called X), Prices per 
consumption (called Y), and temperature of the day (called Z). The DAG formation of Figure 
1 aptly captures the relations of these two scenarios. In scenarios A and B, if one isolates the 
variable Z (perform an adjustment on it), one will realize that X and Y have little or no rela-
tionship. Thus, it is pertinent to know that data analysis without these DAG formations of 
an SCM depicting the relations of these variable sets cannot reveal the truths painted in both 
of these scenarios. The effective Isolation of confounding to determine the actual relations 
between two variables is what RCT tests are good at achieving. Thus, the SCM framework 
achieves a similar feat by simulating this RCT experiment with datasets. Hence, it is extremely 
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important that the DAG formation of the SCM be validated with the dataset from the inter-
vention program and found to be correct in order to be assured of reliable inference estimates 
from such a model. 

Other methods of testing and validating datasets exist for ML and other causal evalua-
tion methodologies, such as Granger causality, cross-validation bootstrap validations, etc., [9, 
10] but, they are not useful for validating the DAG structure of an SCM, which is our focused 
methodology in this study, and neither are they useful in terms of identifying the confounding 
variables, which causes confounding bias within the dataset. Take, for instance, the Granger 
causality, it is a causality test used popularly in the field of econometrics for testing causality 
with time series datasets [11, 12]. It uses a time series dataset that is similar or dissimilar in 
nature to predict and test another time series dataset. Cross-validation and bootstrapping tests 
are used in the validation of ML predictions in a dataset, and these sets of tests do not in any 
way reveal the dataset's data structure or the generating process of the dataset, which we seek 
to determine in this study. However, the CIT criteria of the SCM is capable of identifying the 
structure of an SCM DAG, which is a representation of the dataset structure and the con-
founding variables in the datasets, and it can sometimes be employed in dealing with selection 
bias as well [13, 14]. 

The aim of this study therefore is to show how a CIT validation process for an SCM can 
be achieved and performed with an intervention program dataset (SENSE-EGRA). Every 
intervention will require an evaluation of its impact, and this impact evaluation can only be 
correctly performed on the dataset that has being correctly validated for correctness using the 
CIT criteria for an impact evaluation with the SCM framework. Thus, in doing so, we used 
the intervention dataset that is obtained from the American University of Nigeria (AUN), 
Yola’s project on the letter identification subtask for the Early Grade Reading Assessment 
(EGRA) program called Strengthen Education in Northeast Nigeria (SENSE-EGRA), which 
was sponsored by USAID. This program was conducted between 2021 to 2202. Thus, with 
this dataset, we designed an application-based novel SCM from the background knowledge 
of the dataset and thus, using the CIT criteria for the correctness validation of the designed 
SCM, the results show a near-perfect model. See Table 4 and Figures 3, 4, and 5 for the 
conceptual framework procedure, SENSE-SCM model design, and the CIT results. 

1.1 Related Works 

Other similar EGRA projects have used different techniques for the analysis and esti-
mation of some EGRA intervention programs as it concerns the task of letter identification 
and other tasks in different parts of the world, as shown in these references [8, 15] [16], [17], 
[18], [19], [20-22]. See Table 1 for a detailed summary of the related works of those references.  

Table 1. Shows summaries of the related works on EGRA Studies across the world on Letter Identification and Other Tasks with 
their Methods of Evaluations 

Ref 
EGRA Intervention Tasks/Grade 

Level 
Evaluation Method EGRA Name/ Country 

[8, 15] Letter identification and 6 other 

tasks/2 

SCM and PO SENSE/Nigeria 

[23] Letter Identification and 4 other 

tasks/1-9 

PO and Bayesian Additive Tree (BART) Arabic Assessment/ Lebanon and 

Syria 

[16] Letter identification and 6 others/1-3 Descriptive and Inferential statistics Kakuma and Kalobeyei/ Kenya 

[17] 

 

Letter recognition/1-3 RCT & Descriptive/ Inferential statistics  Improving Reading/ South Africa 

[18] Letter identification & Mathematics 

/1 & 2. 

Quasi-experiment & Descriptive/Infer-

ential statistics 

Learning for Living project: South 

Africa 

[19] Letter identification & Mathemat-

ics/1-9 

Triple t-test Inferential statistics & Dif-

ference-in-Difference-in-Difference 

(DDD)  

Literacy Program at the Right Age 

(Pacto pela Alfabetização na Idade 

Certa [PAIC]): Brazil 

[20-22] 

 

Letter Identification & 6 others/2 & 

3 

RCT & Descriptive and Inferential sta-

tistics  

EGRA Plus: Liberia 



Journal of Computing Theories and Applications 2023, vol. 1, no. 2, Ayem, et al. 89 
 

 

However, a study by Oca et al. [23] implemented the potential outcome (PO) framework and 
the Bayesian Additive Regression Tree (BART) in an Arabic-EGRA intervention program 
task on letter identification and other subtasks without validating the framework. Thus, our 
study uses the SCM framework instead of the PO framework to design and validate SCM 
correctness in the area of letter identification for grade II students. Table 2 shows the major 
differences between our study and that of Oca et al. [23]. 

Table 2. Evince the differences between the study by Oca et al. [23] and ours as it concerns the methods, assumptions, and models 
employed 

Comparison Indices Oca et al. [23] Study Our Study 

Causal framework em-

ployed 

PO Framework. SCM Frameworks. 

Assumptions used in 

overcoming confounding 

bias in covariates set 

Unconfoundedness (ignorability), stable 

unit treatment value assumption (SUTVA), 

& and the Overlap. 

SCM Backdoor adjustment criteria, with its do-calculus 

intervention process.  

Model description of the 

dataset [Y:Yes/N: No] 

N: No model description of the dataset is 

present. 

Y: The model description of the dataset is coded in 

DAG. See Fig. 4.  

Model & Assumptions’ 

Validation [Y:Yes/N: No] 

N: PO has no model, and its assumptions 

cannot be validated. Thus, there is a possi-

bility of performing adjustment on the me-

diator variable, which can then cast a 

shadow on the causal impact estimates 

produced. 

Y: Dataset assumptions encoded in the model (DAG) 

are validated using the CIT criteria. Thus validating the 

causal impact estimates that may come from the pro-

cess. Fig. 3, 4, Table 4 & Algorithms 1 & 2 for model 

design, and model validation via CIT criteria.  

1.2 Study Contributions, Study Structure, and Definition of Terms 

This section discusses the contributions of this work and presents its structure and def-
initions of terms. 

1.2.1 Study Contributions 

The main contributions of this work are as follows: 

1) Theoretical insight into structural causal model (SCM) framework, 

2) Design of a conceptual framework for CIT criteria and impact evaluation processes. 

3) Development of an application-based novel SCM for the SENSE-EGRA dataset 

4) Designed of a general and specific algorithm procedure that can be used for the EGRA 
SCM models & the SENSE-EGRA model validation process. 

5) Model validating using the conditional independent test (CIT) criteria  

6) The empirical implementation of the experiment. See the Data Availability Statement 
link for the data and codes for the experiment reproducibility link. 

1.2.2 Study Structure and Definition of Terms 

In section 2, the basic theoretical concept of the structural causal model is discussed. 
Section 3 discusses direct acyclic graphs and their relations to causality and the Bayesian net-
work factorization. Section 4 presents some of the main assumptions driving SCMs. Section 
5 presents our experiment setup as it relates to the design of our SENSE-EGRA SCM. Sec-
tion 6 presents our model correctness validation testing results using the CIT criteria. Finally, 
section 7 wraps up the study and gives direction on future work. 

1.2.3 Study Definition of Terms 

In this paper, just like is common with papers in the field, capital letters such as 𝑋 rep-

resent a variable set. While their lowercase counterpart 𝑥, would represent instances of the 

variable set 𝑋. Also, characters such as 𝑇, 𝑌, 𝑋𝑖 would stand for single variables and their 

associates lower cases such as 𝑡, 𝑦, and 𝑥𝑖 would stand for their values respectively. Also, 

we use F𝑋 or 𝑓(𝑋) for a function on a variable set 𝑋 and an instance of such a function 

would be represented by F𝑥  or 𝑓(𝑥). The calligraphic upper characters such 𝒢, 𝒱, and 

ℰ stand for graph, node-set, and edges or vertices sets, respectively. For graphs of family 
relations, 𝑃𝑎(𝑉𝑖) stands for a set of parent nodes of a set of variables (𝑉𝑖) found in the graph 
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and 𝑝𝑎(𝑉𝑖) is an instance of 𝑃𝑎(𝑉𝑖). Similarly, the character 𝐶ℎ(𝑉𝑖), would stand for chil-

dren node set in the graph 𝒢 and the 𝑐ℎ(𝑉𝑖) is an instance of 𝐶ℎ(𝑉𝑖). The letter 𝑇 (its 
lowercase indicating its instance) is used as the treatment variable, and we assume the treat-

ment to be binary and univariate. Similarly, the variable 𝑋 is also used as a set of covariates 

in the graph. While the variable 𝑌 denotes the outcome variable with lower case, or lower 
case with subscript as an instance of it, or 𝑦  with a bracketed binary digit such as 

𝑦𝑖(0), 𝑦𝑖(1) denotes instances of the treatment subscribed to them (which can also represent 
the potential outcome for treated and controlled under the PO framework). Finally, the sym-

bol 𝜏 defines the various treatment effects, which is usually the change in the outcome var-
iable for different treatment levels. 

2 Basic Concept of Causal Models 
In this section, the two major frameworks used for causality, which are the structural 

causal model (SCM) and the potential outcome or Rubin causal model (RCM) are defined; 
with particular emphasis on SCM techniques, DAGs formation and assumptions in the frame-
work. Also, we present a brief juxtaposition explaining the major differences in both of these 
frameworks in Table 3, albeit major emphasis of this section is on the SCM framework.  

2.1 Causal Model 

A causal model is an abstraction of mathematics that describes quantitatively the rela-
tions of causality that exist among variables in an observable dataset [24]. These mathematical 
models are derived from the domain and background knowledge embodied in the DAG, and 
they evince the causal relations within the observable datasets [25-27].  

2.2 Types of causal models 

Two types of causal exist for causality, which are (i) the Structural causal model (SCM) 
proposed by Pearl [26] and (ii) the Potential outcome framework also called the Rubin causal 
model (RCM) [28, 29]. However, the study scope is limited to the SCM, and not the PO or 
RCM. Albeit Table 3 presents a brief juxtaposition of these two frameworks [30-32]. 

Table 3. A brief juxtaposition of these two frameworks for causal analysis in observational studies. 

SCM Framework PO Framework 

Causal relations in the dataset are explicitly stated in the DAG 

and structural equations, which depict causality. 

No depiction of causal relations in the dataset, rather, tables are 

used to represent potential outcomes of the subject under study 

with many missing data for counterfactuals. 

The framework is model-driven and defines causality in terms of 

a single data generation Process (DGP). 

The framework is data-driven and defines causality in terms of 

counterfactual and many DGP. 

Variables that are not part of the dataset (e.g., instrument variable 

(IV)) but have causal relations with the dataset can also be repre-

sented in the DAG and factored in the inference estimation pro-

cess. 

Only variables in the datasets are factored in the inference estima-

tion process since there is no DAG. 

The framework uses theorems that are proven in the world to be 

true 

The framework uses assumptions that have no proof in the real 

world 

Confounding bias is dealt with using the backdoor adjustment 

criteria and, in rare cases, the front-door adjustment. 

Confounding bias is dealt with using the unconfoundedness as-

sumption. 

The backdoor Adjustment criteria provide guidelines for how and 

where covariates adjustment can be made, e.g., no adjustment on 

mediators and colliders. 

The unconfoundedness condition, which is the equivalent of the 

backdoor criteria, does not provide guidelines on how the adjust-

ments are made. Adjustments are made based on the researcher’s 

discretion. 

Over-adjustment on covariates does not occur due to well-de-

fined variable relations by DAG. 

Over-adjustment on covariates can sometimes occur, which is ca-

pable of violating the overlap condition (selecting instances that 

are treated or controlled only and not both). This is a selection 

bias issue. 
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SCM Framework PO Framework 

The assumption encoded in the DAG, which enables the applica-

tion of the backdoor adjustment criteria, can be validated in the 

dataset under the CIT criteria, as shown in the results of Table 4, 

and Figure 5 of our study. 

The unconfoundedness assumption has no validation. 

The do-calculus (do-operator) is used for intervention in SCM. Intervention exists that is similar to the do-calculus but not ex-

plicitly stated as do-calculus. 

SCM is used mostly in the field of Computing and related disci-

plines.  

PO is used mostly in social science and econometric disciplines. 

SCM is best suited when the goal is to learn the causal relations 

of variables in the dataset. 

PO is best suited when the goal is to quickly estimate the effects 

of a given treatment on some outcome, which is the causal infer-

ence, and the emphasis is not on the causal relations. 

SCM was proposed by Judea Pearl, a Computer Scientist  The PO framework was proposed by Donald Rubin 

 

2.2.1 An SCM 

The framework for causality based on SCM gives a holistic understanding of the theory 
of cause and effect. It is composed of two parts: the causal diagram (or graph) that encodes 
background domain knowledge and assumptions of the distribution (the dataset), and the 
Bayesian network factorization (BNF) or structural equations part, which models or algorith-
mized (mathematically) the relations among the study variables based on the causal assump-
tions from the graph [5, 24, 33, 34]. This work focuses more on the SCM with a more detailed 
explication of the connections between the graphs and the dataset in subsequent sections. 

2.3 Causal Relations with SCM 

Determining the causal relations that exist among variables in an observational study in 
a purely probabilistic distribution is an ambiguous and daunting task. If a conditional proba-

bility distribution such as 𝑃(𝑌|𝑋), for instance, represents the conditional probability distri-

bution of obesity (𝑌) given a particular level of sugar intake (𝑋). This distribution relation 
is ambiguous in terms of an experimental setting (RCT) where sugar intake was ascertained 
by randomization or merely through an observational process. In his book on causality, Pearl 
[26] differentiated the mere conditional observational probability distribution (i.e., statistical 
association/correlation) from the interventional conditional probability distribution (which is 
a causal association), and introduced the do-operator or the do-calculus to differentiate inter-

ventional distribution from observational’. Hence, the expression 𝑃(𝑌|𝑋) can now be re-

garded as a mere conditional observational that depicts how the probability of 𝑌 (obesity) 

will change if someone were to observe the sugar intake (𝑋). While 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) is 
regarded as the interventional conditional probability distribution (which is a causal associa-

tion), depicting the probability of obesity (𝑌) given that a measured unit of sugar (𝑥) were 
taken (purposefully and not observed). Hence, making the observation and intervention dis-

tinct: 𝑃(𝑌|𝑋 = 𝑥)  ≠ 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)).  

The practical difference between the two may be the existence of a variable(s) 𝑍 (indi-
vidual gene tar, for instance) that may be confounding the relations, which exists in some 
back-door path: See Figure 1 DAG for confounding relations. In the intervention distribu-

tion, the causal effects are determined given difference values of the treatment/control 𝑋 
(i.e., when sugar is taken and when sugar is not taken), and this can be measured and com-

pared in the interventional distribution, written as 𝑃(𝑌|𝑑𝑜(𝑥 = 1)), and 𝑃(𝑌|𝑑𝑜(𝑥 = 0)) 
where 1 and 0 stands for treatment and no treatment (control) respectively for an individual 
instance, which is called the individual treatment effect (ITE). Thus, when this process in-
volves all sampled or all instances of the population, the causal intervention is defined in 
terms of the average treatment effects (ATE) for the instances of the population. Written in 

terms of the expectation as 𝜏(1,0) = 𝐸[𝑌|𝑑𝑜(𝑥 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑥 = 0)].  
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(a) 

 
(b) 

Figure 1. Depicts the observational statistical correlational relations distribution (a) An SCM without 
intervention (b) An SCM under the intervention dot(t) 

Also, conditional average treatment effects (CATE) can be similarly taken for sub-group pop-
ulations as well. Thus, it can be seen that this kind of intervention models or simulates an 
RCT experiment that determines causality in the observational dataset [35, 36]. Despite the 
clear distinction describing and differentiating these two processes by Pearl et al. [26], not 
every dataset can be neatly categorized into this distinction between observational and inter-
ventional datasets, as some experiments may not clearly or wholly show the value of the var-
iable that is intervened on in the dataset. Thus, due to these two distinctions, which are ob-
fuscated in the distributions, it has become imperative to represent causal models explicitly 
in terms of the directed acyclic graph (DAG) or simply causal graph as proposed by Pearl et 
al. [35]. The causal graph in SCM is an essential component that makes it easier to identify 
the causality from the dataset; hence, we discuss them in the next section. 

3 Causal Graph 

This section presents causal graphs as is applicable in SCM. Fundamental concepts in a 
graph such as the popular backdoor adjustment criteria and the BNF are elicited and expli-
cated. 

3.1 Causal graph Composition:  

A causal graph (denoted as 𝐺 = (𝑉, 𝐸) consists of two or more nodes (also called ver-

tices) representing a random variable set (𝑉), 𝑤ℎ𝑒𝑟𝑒 𝑉 = 𝑋1,  𝑋2, 𝑋3, … 𝑋𝑛, and several con-

necting lines among the nodes called edges (𝐸). These random variables may include the 
observed and existing (if they exist) variables alongside the treatment and outcome variables. 
Figure 2: 1A is an undirected graph due to the lack of directional arrows on them. While 1B, 
the graph is directed because of the arrow direction. And 1C shows a directed graph with a 

cycle [37], and finally, 1D shows an intervention graph on variable 𝐶. A directed edge from 

𝐴 to 𝐵 (written as 𝐴 → 𝐵) is interpreted as 𝐵 is caused by 𝐴 or (𝐴 is the potential cause 

of 𝐵) [24]. Hence, with a causal graph, a hypothesized causal model can be designed through 
the causal pathways in the graph, and all dependent/independent relations as they relate to all 
variables associated with the query are known. This graph model can be factorized using the 
Bayesian network factorization or the structural equations; based on some assumptions to 
obtain a causal estimand of the conditional probability distribution from which it can be used 
with the observed dataset to ascertain the causal estimate of the hypothesized query [35, 38]. 

 

Figure 2. Shows an undirected, directed, directed with cycle, and intervention graph 

A path in the graph is an oriented order of adjacent edges irrespective of the direction of the 

adjoining nodes. For instance, 𝐴 − 𝐶 − 𝐵 is considered as a path in Figure 2 1A and 𝐴 ⟶
𝐶 ⟵ 𝐵  is also a path in Figure 2 1B. A directed path is one in which all edges are directed 

or pointing in the same direction. E.g., the path, 𝐴 ⟶ 𝐶 → 𝐵  in Figure 2 1B is regarded 
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as directed. Most causal algorithms work best with the directed acyclic graphs (DAGs) con-
dition, as shown in Figure 2 1B, and a few causal algorithms work with the cyclic graph con-
dition, as shown in Figure 2 1C [5, 24, 33, 34]. 

3.2 Three Cardinal Relations in Graphs  

A descendant of a node 𝐴 is a node 𝐶 ∈ 𝑉, such that there is a direct edge from 𝐴 to 

𝐶 (written as 𝐴 ⟶ 𝐶) in the DAG 𝐺. This corresponds to 𝐴 being an ancestor (parent 

of) 𝐶. The progenies (𝐴 and 𝐵) of a node 𝐶, are the nodes in 𝑉 with a directed edge con-
necting 𝐶, (designated s: 𝐴 ⟶ 𝐶 ⟵ 𝐵). This child and two parents relationship desig-

nated as 𝐴 ⟶ 𝐶 ⟵ 𝐵 is also called a collider [39, 40] or immorality [27, 37] and is the first 
basic relation that can exist among variables represented in DAG. A second relation exists 

called a mediator or chain, where a parent node 𝐴 (usually exogenous) produces a child node 

𝐶, where in turn produces another child 𝐵 (which is a grand descendant of 𝐴) [27, 35, 38]. 

Finally, a third relationship exists where a node 𝐶, which is a single parent having two de-

scendants 𝐴 and 𝐵  (written as 𝐴 ⟵ 𝐶 ⟶ 𝐵) is called a fork or common cause con-
founder. Thus, these three relations (collider, chain/mediator, and fork) are the three com-
mon relations that exist in an observational dataset and can be mirrored or expressed in a 
DAG, forming the building block or structure in the causal graph for determining relationship 
(causal or associational) in observational settings [27, 33, 35, 38, 41, 42]. 

3.3 Causal Connection & the Backdoor Adjustment Criteria in a Graph 

D-separation and d-connection are the processes that define a set of variable 𝑉’s con-

nectivity in a causal graph 𝐺 [42]. The 𝐷 in the d-separation and d-connection stands for 
dependency and it is a process of establishing independence or dependency from two or more 

variables that are independent or otherwise on a third variable 𝐶 in in a DAG, which is a 

reflection in the dataset. For instance, in the case of a fork (𝐴 ⟵ 𝐶 ⟶ 𝐵), or a chain/medi-

ator (𝐴 ⟶ 𝐶 → 𝐵), the variable 𝐶 is a link between both 𝐴 and 𝐵. Hence, once you con-

dition the linking variable 𝐶, you will block or close the dependency relationship that exists 
between paths 𝐴 and 𝐵. That is to say, paths 𝐴 and 𝐵 will become independent condi-

tioned on 𝐶, written as 𝐴∐𝐵|𝐶. Albeit the reverse is the case, when it comes to the collider 

or immorality structure  (𝐴 ⟶ 𝐶 ⟵ 𝐵), as the paths A and B are already independent or 

blocked in their current state (i.e., 𝐴∐𝐵 ∤ 𝐶: 𝐴 is independent of 𝐵 not conditioned on 

𝐶), without the need for conditioning on any variable including 𝐶. Hence, once you condition 

on 𝐶, a relationship between 𝐴 and 𝐵 is induced (i.e., 𝐴 and 𝐵 become dependent con-

ditioned on 𝐶. written as 𝐴 ∐ 𝐵|𝐶). This process of blocking the flow of unwanted associ-
ation on non-causal pathways to determine causality only through a causal pathway is called 
the backdoor adjustment criteria [43, 44]. Pearl et al. [42], defined the process of d-separation 
and d-connection for backdoor adjustment criteria in a DAG 𝐺 formally as follows:  A path 

connecting two variables 𝐴 and 𝐵 is said to be d-separated or blocked if and only if: (i) the 

path contains a fork such as (𝐴 ⟵ 𝐶 ⟶ 𝐵) or chain/mediator such as: (𝐴 ⟶ 𝐶 → 𝐵) that 

has been conditioned on 𝐶. Written as: (A∐𝐺 B|C), and (ii) the path between 𝐴 and 𝐵 

contain a collider on 𝐶, such as (𝐴 ⟶ 𝐶 ⟵ 𝐵)  that has not been conditioned on, along-

side any descendant of collider 𝐶, that is not conditioned on as well. Written as: (𝐴∐𝐺𝐵 ∤
𝐶) or just 𝐴∐𝐺𝐵. This same process of d-separation and the backdoor adjustment criteria 
from the graph 𝐺 can be utilized to determine dependencies/independencies of variables in 
the distribution (or dataset), which is a factorization of the d-separation in the graph using 
the Bayesian Network Factorization (BNF). The d-separation in the distribution is written as 

A∐𝑝 
B|C, or A∐𝑝 

B|C for independence and dependency conditions, respectively, similar 

to the d-separation in the graph with the subscript P to distinguish it from the graph’s d-
separation criteria, which is represented by the subscript G. This can further be used to de-
termine causal relations in the distribution as whole. On the other hand, a path from 𝐴 and 

𝐵 through 𝐶 is said to be d-connected, unblocked, or open when it is not d-separated [38, 
42]. 

 



Journal of Computing Theories and Applications 2023, vol. 1, no. 2, Ayem, et al. 94 
 

 

3.4 The Bayesian Network Factorization (BNF) in Graphs 

 The DAGs are interpreted in two parts, i.e., the probabilistic and the causal interpreta-

tions. The probabilistic inference sees the directional arrows on the DAG 𝐺 as showing 
probabilistic dependencies or associations among the variables of the study, while the lack of 
arrows corresponds to the conditional independence asserted by the study variables [7]. Based 
on some assumptions, the simplest being the Markovian condition, which states that each 
study variable is considered independent of all its non-descendants in the graph except its 

direct parent. Usually written as 𝐴∐𝐵|𝐶. Hence, based on the assumption, the joint proba-

bility distribution function 𝑃(𝑣) = 𝑃(𝑣𝑖 , … , 𝑣𝑛) factorizes based on the BNF as Equation 
(1). 

𝑃(𝑣) =  ∏ 𝑃(𝑣𝑖|𝑝𝑎𝑖)

𝑛

𝑖

 (1) 

Where 𝑣𝑖 = 1, … , 𝑛, 𝑎𝑛𝑑 𝑝𝑎𝑖 denotes the parent of the variable 𝑣𝑖in the graph [7, 24, 42]. 
Thus, based on the BNF of Equation (1), the graph in Figure 2:1B for instance, the 

probability distribution of it (i.e.,1B), can be factorized and summarized based on the Markov 
assumption as Equation (2).  

𝑃(𝐴, 𝐵, 𝐶) =  𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐵, 𝐴)𝑃(𝐷|𝐶) (2) 

This contrasts the normal Bayesian probability distribution network, which uses the 
chain rule without the graph and the Markov assumption, written as Equation (3).  

𝑃(𝐴, 𝐵, 𝐶) =  𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐵, 𝐴)𝑃(𝐷|𝐶, 𝐵, 𝐴) (3) 

The difference in Equation (2) and (3) is in the last product conditional probability of 𝐷, 
where Equation (2) reduces the conditioning probability to only its immediate parent node 

𝐶, based on the position of Equation (1) and as captured in the graph of Figure 2:1B. While 
Equation (3) assumes no graph and factorizes the distribution using the chain rule. Hence, 

the probability of 𝐷, given (or conditioned on:) 𝐶, 𝐵, and 𝐴 are used as elicited in Equa-
tion (3). 

3.5 Causal Identifiability with BNF Intervention Graphs 

The second interpretation of the graph is called a causal interpretation. In this scenario, 

the arrow direction in the DAG 𝐺 represents the causal relations among the variables. Here, 
the BNF of Equation (1) above is still essential, but the arrows are assumed to evince a sepa-

rate process in the data generated. Hence, after eliciting a causal path from the DAG 𝐺, the 

conditional probability of the distribution   𝑃(𝑣𝑖|𝑝𝑎𝑖) which is generated based on the 

graph 𝐺, which is a statistical estimand, can be estimated from the data. The relations of 
conditional dependency expressed by the BNF formula of Equation (1) do not necessarily 
lead to causal inference (due to the mixtures of confounding variables sometimes). However, 
Equation (1) can be extended to cater to interventions (which are causal in their implementa-
tion) as presented by Pearl in [26]. Using the do-operator of the do-calculus as an intervention 
on the desired variable (or node), the difference between mere conditional distribution (cor-

rection), written as 𝑃(𝑌|𝑋 = 𝑥), and the causal intervention of the conditional distribution, 
written as 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)), in the graph and subsequently, the data can be distinguished. 
For instance, if the graph in Figure 2 were derived from the query hypothesis of determining 

the effects of shoe size 𝑋 on the reading ability 𝑌 of children. The age variable 𝑍, con-

founds the relationship between reading ability 𝑌 and shoe size 𝑋, making them have sta-
tistical correlation as shown in Figure 1(a). But when you carry out an intervention on the 

shoe size 𝑋 such as 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)), the age variable 𝑍 that confounds the relations is 
severed, and the conditional probability of the BNF produces an estimand which is given as 

𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) = 𝑃(𝑍)𝑃(𝑋|𝑍)𝑃(𝑌|𝑍, 𝑋) . This is summarized by getting rid of the factor 

for the probability of 𝑋 in the BNF to get 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) = ∑ 𝑃(𝑌|𝑍, 𝑋)𝑧 𝑃(𝑍). With 
this causal intervention estimand, using the d-separation and the backdoor criteria, the shoe 

size 𝑋 will be set to a treatment unit of 1 and no treatment (control) unit of 0, while con-

ditioning on a certain age 𝑍 say 8 years. Thus, the difference between the treatment and no 
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treatment of shoe size (𝑋: 0,1) generated from conditioning on a certain age (𝑍 = 8 ) for 

the set of 𝑍 variable in the dataset can be calculated as the ATE, given mathematically in 

terms of their expectation as 𝜏(1,0) = 𝐸[𝑌|𝑑𝑜(𝑥 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑥 = 0)], which translate 

to the causal estimate or causal inference estimation on the effect of shoe size 𝑋 on reading 
ability 𝑌 in children. This estimate would likely be zero (no effect), thus killing the lurking 
variable (age) and exposing the spurious association (correlation) that exists between shoe 

size 𝑋 and reading ability 𝑌. Note however that if the confounding variable 𝑍 is unob-

served or not part of the distribution (the dataset), the causal identification of 𝑋 on 𝑌 can-
not be feasible to obtain in the data, even though it is revealed in the graph. This do-operator 
which translates to intervention and causality in data differentiates mere association (correla-
tion) that is used in machine learning algorithms. With SCM, counterfactual hypothesized 
queries which are carried out on an individual level of the sampled dataset can also be esti-
mated, using some techniques proposed by Pearl [45, 46] which transcend the do-operator of 
the do-calculus, which only work with i.i.d condition [47]. Although counterfactual causal 
effects would not be covered in this work. 

4. Assumptions in SCM 

This section covers the three major assumptions often used for causality, especially with 
i.i.d datasets, thus driving the process of causality in observational data setting with the SCM 
framework. These assumptions are (i) The Markov assumption, (ii) The Acyclicity assumption 
(iii) The causal sufficiency assumption. These assumptions are summarized as follows: 

4.1 The Markov Assumption 

This assumption states that a parent node in a DAG 𝐺 representing a variable is con-
sidered independent of all its non-descendant in the graph except its direct parent. This as-
sumption ensures that causal estimand for the identification of the causal relations is gener-
ated from the graph to the data, using the BNF or the structural equation of functional causal 
model (FCM). This estimand which is modeled using the Markov condition when it is suffi-
cient (i.e., all confounding variables identified), becomes the basis for which the probability 
distribution, which is a statistical estimand can be estimated from the dataset. Equation (1) is 
a representation of the Markov condition. The Markov assumption when combined with the 

causal edge assumption that states that: in a DAG 𝐺, all adjacent nodes are dependent; can 
generally be referred to as the minimality assumption [29, 37, 48].  

4.2 The Acyclicity Assumption 

It is the phenomenon that ensures that the set of adjoining variables nodes 𝑉 in the 
causal graph does not form a cycle, a feedback loop, or go back in time as shown in Figure 
2:1C, but are rather directed and acyclic as shown in Figure 2:1B [49, 50].  

4.3 The Causal Sufficient Assumption 

This condition states that in a given causal graph 𝐺, there are no variables confounding 
relationships that are unobserved among the study variables. That is to say, the causal suffi-
ciency assumption ensures that all variables that may be confounding or have a hidden effect 
on the hypothesized query variable of treatment and outcome (𝑡, 𝑦) are identified and ex-
plicitly shown on the graph, whether or not they are observed in the distribution of the dataset 
[51-53]. Hence, these are the assumptions that are employed in the development of our 
SENSE-EGRA SCM. 

5. Experiment Setup 

This section explains the procedure for designing an SCM from the background and 
then identifying the criteria for performing a CIT with the designed SCM. It also explains the 
dataset and its focused task of letter identification, and how and when it was obtained and 
processed. 
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5.1 Dataset Description 

According to a report from [54], two rounds of data collection were made (baseline & 
endline). The baseline assessment was carried out in November 2020 with 965 learners (482 
from 146 schools in 11 local government areas (LGAs) in Adamawa, and 483 from 69 schools 
in 11 LGAs in Gombe). The end-of-project assessment was done in July 2021 with 964 learn-
ers (481 students from 125 schools in 11 LGAs in Adamawa, and 483 students from 70 
schools in 11 LGAs in Gombe). Data is analyzed taking into account the sampling design 
(school strata, and sampling probability weights). The baseline sample contains a total of 457 
boys and 508 girls, with an average age of 7.8 years. The end-of-project (endline) sample 
contains a total of 471 boys and 493 girls, with an average age of 8.8 years, making a total of 
1,929 total datasets for the project.  

5.2 Letter identification tasks 

This task assesses a pupil’s capability to identify the letter of an alphabet and its sounds 
naturally, without being hesitant. The task is made up of a page of a hundred upper/lowercase 
letters dispersed in ten rows of ten letters. These letters were randomly ordered. Also, the 
number of times each given letter appears is determined by the frequency that letter appears 
in primary school texts. The children were asked to say the letter and its sounds as many 
letters as they could in a minute. The evaluation score for this task is the number of letters a 
child correctly named in a minute. This measure is known as correct letter sounds per minute 
(CLSPM) identified in the dataset as LI_3 variable. 

5.3 Initial Dataset Cleaning 

The initial dataset cleaning performed according to a report from [54] was guided by the 
following checklist:  
1) Review incomplete assessments.  
2) Remove any “test” assessments that were completed before official data collection began. 
3) Ensure that all assessments are linked with the appropriate school information for identi-

fication. 
4) Ensure the child’s assent was both given and recorded for each observation. 
5) Ensure that all timed subtask scores fall within an acceptable and realistic range of scores. 

5.4 Final Dataset Cleaning 

After identifying the task to concentrate our analysis on (i.e., the letter identification 
subtask), we expunged the said subtask from the rest of the dataset in order to concentrate 
our analysis. Further, we then performed the second cleaning or data preprocessing on the 
dataset. Therefore, using the Python Jupiter notebook programing language, we were able to 
remove all the rows with missing values or NAs, and also removed the column with the 
student’s ID/name from the dataset. Therefore, we ended up with a total of 1,114 records 
for the subtask of letter identification. For a detailed description of the dataset's variable 
names and their class options, please see the link in the Data Availability Statement. 19 col-
umns are of interest for our design of the SCM and analysis. These columns are further 

grouped into 5 distinctive groups which are: A set of input features or covariates (𝑋) where 

𝑋 instances are: 𝑆𝑡𝑎𝑡𝑒, 𝐿𝐺𝐴, 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐴𝑔𝑒  etc.; the output feature 𝐿𝐼_3 (𝑌), the treat-

ment variable 𝑇 (𝑇𝑟𝑒𝑎𝑚𝑒𝑛𝑡) and two other assessment or evaluation features (𝐿𝐼_1,  and 
𝐿𝐼_2) respectively. See the link in the Data Availability Statement for more details on the 
dataset-encoded meanings. 

Thus, based on the above-discussed methodology in section 2, we designed the SENSE-
EGRA SCM of Figure 4 using the background knowledge generated from the data collection 
process, and validated the model’s correctness with the dataset using the CIT criteria as shown 
in Equation (4), and the result is presented in Table 4. The entire CIT criteria and impact 
evaluation estimation process is shown in Figure 3. Further, in Figure 3, the dotted shapes 
show either an intangible process or an incomplete process in this study. Thus, the process 
of acquiring background knowledge of the EGRA task that generated the dataset is an intan-
gible process and the processes of estimating the impact evaluation and interpretation of the 
impact evaluation are incomplete processes that are yet to be captured or completed in this 
study (See section 7.2 of our future work). 
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𝑃(𝐿𝐼_1 ⊥ 𝑋|𝐿𝐼_2, 𝑇 

𝐿𝐼_2 ⊥ 𝑇|𝑋  

𝐿𝐼_3(𝑌) ⊥ 𝑇|𝐿𝐼_1, 𝐿𝐼_2  

𝐿𝐼_3(𝑌) ⊥ 𝑋|𝐿𝐼_2, 𝑇  

𝐿𝐼_3(𝑌) ⊥ 𝑋|𝐿𝐼_1, 𝐿𝐼_2)  

(4) 

Where the term ⊥ means independent of, and | means given. 
Thus, the estimand and the back-door adjustment criteria, which identified the admissi-

ble set of covariates required for adjustment in our SENSE-EGRA SCM, as shown in Figure 
4(a) is given as Equation (5). 

P(T, X, LI_2, LI_3) = P(LI_3|X, LI_2, T)  (5) 

 

Figure 3. Shows conceptual framework procedure for performing the CIT criteria and the impact 
estimation 

The corresponding NPSEM generated from mutilated DAG (intervention graph) as 
shown in Figure 4(b) for our SENS-EGRA SCM designating an intervention distribution is 
given as Equation (6). 

𝑥 =  f𝑥(𝑈𝑥), 𝑡 =  𝑡′, 𝑙𝑖2 =  f𝑙𝑖2
(𝑥, 𝑈𝑙𝑖2

), 𝑙𝑖1 =  f𝑙𝑖2
(𝑡, 𝑈𝑙𝑖1

), 𝑙𝑖_3 =  f𝑙𝑖3
(𝑙𝑖1, 𝑙𝑖_2, 𝑈𝑙𝑖_3)  (6) 

Notice that 𝐿𝐼_1 is not conditioned on, since from the DAG, it is considered a post-
treatment or mediator variable. Pearl et al. [7, 26, 45, 55], advised against conditioning on 
such post-treatment or mediator variables. Section 6, presents the result of the conditional 
independence test (CIT) implemented in an R library package called Daggity of reference [56]. 

 
(a) 

 
(b) 

 Figure 4: Shows our SENSE-EGRA SCM with (a) and without (b) intervention 

6. Results Presentation & Discussion 

In this section, we present the result for the validation of the SENSE-EGRA SCM using 
the CIT criteria. 

6.1 Results Presentation for CIT Criteria for SENSE-EGRA SCM 

Designing a SCM is a qualitative process that is subjective based on background 
knowledge. Hence, to ensure its correctness experts advise validation and testing of the model 
with the dataset, which is an objective process [4, 7, 45, 57-60]. One of the most pervasive 
objective validation tests for SCM is the use of conditional independence testing (CIT) criteria 
[7, 45, 57-60]. Thus, once the validation process is over, and SCM is affirm to be the true 
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representation of the dataset, the adjustment criteria can be applied to the SCM. Pearl et al.[7, 
45, 58], proposed two adjustment criteria (the backdoor and front door) depending on the 
structure of the SCMs in a concept called the d-separation (dependency separation). This 
concept when properly applied to the SCM is sufficient to identify the estimand (mathematics 
formula) for adjusting covariates and estimating the causal impact of the intervention. For the 
experiment in this study, we implemented the CIT using the identified conditional independ-
encies set of Equation (4) and applied the back-door adjustment criteria for eliminating con-
founding bias as shown in Equations (5) and (6) respectively. Table 4 shows the results of the 
CIT performed on the dataset to verify and validate the correctness of our SENSE- EGRA 
SCM. The process is implemented in the R library package tool of reference [56], and Algo-
rithm 1 show the CIT procedure for any EGRA SCM intervention program with binary treat-
ment task of letter identification and Algorithm 2 shows the SENSE-EGRA SCM CIT criteria 
using the same task of letter identification.  

 

Algorithm 1. Computation of CIT Criteria for any EGRA SCM with Binary Treatment 
for the task of Letter Identification 
INPUT: X, T, L, Y 
OUTPUT: RMSEA, p.value, CI 
1: Start 

2: Declare {X: = Set of covariates. Where X ∈{𝑥𝑖,… 𝑥𝑛} 

           T: = Treatment variable. Where T∈{0,1} 
           Y: = Outcome variable. Where Y is continuous or categorical  

           L: = Other assessment or evaluation criteria variables. Where L ∈ {LI_1,     
                LI_2}    
           CI: = Confidence Interval @ 95% 
3: Read X, T, L, Y  
4: for X: = 𝑥1 
        compute {P (EGRA-SCM CIT parameters derived from background 
                  knowledge of X, T, L, & Y)} 
         print RMSEA, p.value, 95%CI 
         plot (print) 
5: if RMSEA<=0, p.value <= 0.05, AND plot (print) intersects = 0 OR + 0.1 then 
     print “CIT validation confirmed” 
   else  
     print “CIT validation not confirmed” 

6: for X:= 𝑥2,… 𝑥𝑛 
   Repeat steps 3-5.          

7: End 

 
 

Algorithm 2. Computation of CIT Criteria for SENSE-EGRA SCM for Letter Identifica-
tion Task 
INPUT: X, T, L, Y 
OUTPUT: RMSEA, p.value, CI 
1: Start 
2: Declare {X: = Set of covariates. Where X ∈ {state,..., Q10} 

           T: = Treatment variable. Where T ∈ {0,1} 
           Y: = Outcome variable. Where Y: = LI_3 is continuous  
           L: = Other assessment or evaluation criteria variables.  

                Where L∈ {LI_1, &LI_2}} 
           CI: = Confidence Interval @ 95% 
 
3: Read L_1, L_2, L_3, T, X  
4: for X: = State 

        compute {P(𝐿𝐼_2 ⊥ 𝑇|𝑋, 

       𝐿𝐼_3(𝑌) ⊥ 𝑇|𝐿𝐼_1,  𝐿𝐼_2, 
       𝐿𝐼_3(𝑌) ⊥ 𝑋|𝐿𝐼_2,  𝑇, 
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           𝐿𝐼_3(𝑌) ⊥ 𝑋|𝐿𝐼_1, 𝐿𝐼_2)} 
      print RMSEA, p.value, 95% CI 
      plot (print) 
5: if RMSEA<=0, p.value <= 0.05, AND plot (print) intersects = 0 OR + 0.1 then 
     print “CIT validation confirmed” 
   else  
     print “CIT validation not confirmed” 
6: 6. for X: = {LGA, School, Gender, Age, Q4, Q5, Q6_0,  

                                Q6_1, Q6_2, Q6_3, Q7, Q8, Q9, Q10} 
  Repeat steps 3-5          

7: End 

Table 4. Shows the result of the CIT identified in Equation (4) for each instance of X  

X  localTests for X 95% Confidence Interval 

 CIT Criteria RMSEA p.value 2.5% 97% 

State LI_1 ⊥ State|LI_2, T 1.934137e-02 0.23457122 0.0000000 0.9779508 

 LI_2 ⊥ T|State 0.04312486 1.409349e-18 0.05049194 0.0752212 

 LI_3 ⊥ T|LI_1, LI_2 0.22894596 2.025421e-02  0.0000000 0.9676889 

 LI_3 ⊥ State|LI_2, T      0.18188118 5.410919e-01 0.0000000 1.5405008 

 LI_3 ⊥ State|LI_1, LI_2   0.26666667 4.3937728e-01 0.0000000 1.3552281 

LGA LGA ⊥ LI_1|LI_2, T 0.33122132 2.412407e-10 0.09916436 1.1437016 

 LGA ⊥ LI_3 |LI_1, LI_2 0.53076862 1.184351e-01 0.00000000 1.8904874 

 LGA ⊥ LI_3|LI_2, T 0.33223041 1.199982e-09 0.09886772 1.1605461 

 LI_2 ⊥ T |LGA 0.08186839 6.844103e-08 0.06596507 0.2561412 

 LI_3 ⊥ T|LI_1, LI_2                  0.26666667 4.3937728e-01 0.00000000 1.3552281 

School LI_1 ⊥ School|LI_2, T 0.3226675 2.145096e-10 0.1189509 1.1149223 

 LI_2 ⊥ T |School 0.1169519 2.756094e-01 0.0000000 0.6437887 

 LI_3 ⊥ School|LI_2, T 0.3299584 3.009770e-09 0.1177474 1.1344629 

 LI_3 ⊥ School |LI_1, LI_2 0.6044631 5.560271e-08 0.0000000 2.0094675 

 LI_3 ⊥ T|LI_1, LI_2 0.26666667 4.3937728e-01 0.0000000 1.3552281 

Gender Gender ⊥ LI_1|LI_2, T 0.26596571 2.558248e-10 0.0000000 1.15597679 

 Gender ⊥ LI_3 |LI_1, LI_2 0.46412185 5.548376e-01 0.0000000  1.89753080 

 Gender ⊥ LI_3|LI_2, T 0.27824380 1.766274e-09 0.0000000 1.1558097 

 LI_2 ⊥ T |Gender 0.04870334 4.072550e-08 0.05287745 0.07544265 

 LI_3 ⊥ T|LI_1, LI_2 0.26666667 4.3937728e-01   0.0000000 1.35522813 

Age Age ⊥ LI_1|LI_2, T                0.28759887 1.290115e-07 0.07086121 1.1143157 

 Age ⊥ LI_3 |LI_1, LI_2 0.6410754 2.027767e-02 0.0000000 2.0727100 

 Age ⊥ LI_3|LI_2, T 0.29724065 2.495989e-08 0.07175334 1.1350534 

 LI_2 ⊥ T |Age 0.06153096 4.469679e-05 0.05364941 0.2005052 

 LI_3 ⊥ T|LI_1, LI_2                  0.26666667 4.3937728e-01 0.0000000 1.35522813 

Q4 LI_3 ⊥ Q4|LI_2, T                   0.22919113 2.404441e-01 0.01132237 0.9550414 

 LI_3 ⊥ Q4 |LI_1, LI_2   0.06773323 7.879640e-15 0.05639720 0.1980420 

 LI_1 ⊥ Q4|LI_2, T 0.23124060 2.007787e-01 0.01182804 0.9785783 

 LI_3 ⊥ T |LI_1, LI_2 0.50000000 2.835720e-01 0.0000000  1.9344624 

 LI_2 ⊥ T|Q4 0.26666667 4.3937728e-01 0.0000000 1.3552281 

Q5 LI_3 ⊥ Q5|LI_1, LI_2              0.2669602 1.295997e-03 0.01574901 1.05807555 

 LI_1 ⊥ Q5 |LI_2, T 0.0481797 8.820992e-11 0.05611486 0.08759465 

 LI_3 ⊥ Q5|LI_2, T 0.2706585 1.056003e-03 0.01555926 1.07459377 

 LI_3 ⊥ T |LI_1, LI_2 0.5339333 6.524036e-02 0.0000000 1.96329048 

 LI_2 ⊥ T|Q5 0.26666667 4.3937728e-01 0.0000000 1.35522813 

Q6_0 LI_1 ⊥ Q6_0|LI_2, T  0.21334892 9.796304e-02 0.007870615 0.7946580 

 LI_3 ⊥ Q6_0 |LI_1, LI_2 0.06525431 1.262457e-19 0.064797309 0.1752106 

 LI_3 ⊥ Q6_0|LI_2, T 0.20679963 1.103236e-01 0.007870615 0.7875071 

 LI_3 ⊥ T |LI_1, LI_2 0.0000000 1.000000e-00 0.000000000 0.0000000 
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X  localTests for X 95% Confidence Interval 

 CIT Criteria RMSEA p.value 2.5% 97% 

 LI_2 ⊥ T|Q6_0 0.26666667 4.3937728e-01 0.000000000 1.3552281 

Q6_1 LI_1 ⊥ Q6_1|LI_2, T  0.21573574 2.841007e-02 0.002711375 1.00678441 

 LI_3 ⊥ Q6_1 |LI_1, LI_2   0.04436079 6.145748e-15 0.052218641 0.07923409 

 LI_3 ⊥ Q6_1|LI_2, T 0.22164386 1.788882e-02 0.002980019 1.00789748 

 LI_3 ⊥ T |LI_1, LI_2 0.27190319 4.971093e-01 0.000000000 1.50060436 

 LI_2 ⊥ T|Q6_1 0.26666667 4.3937728e-01 0.000000000 1.35522813 

Q6_2 LI_1 ⊥ Q6_2|LI_2, T  0.17070693 3.591464e-02 0.000898961 0.87175267 

 LI_3 ⊥ Q6_2 |LI_1, LI_2 0.05172867 1.533484e-15 0.056864123 0.08478747 

 LI_3 ⊥ Q6_2|LI_2, T 0.19406491 2.766389e-02 0.000884224 0.91296085 

 LI_3 ⊥ T |LI_1, LI_2 0.35671182 4.808597e-01 0.000000000 1.74885066 

 LI_2 ⊥ T|Q6_2                0.26666667 4.3937728e-01 0.000000000 1.35522813 

Q6_3 LI_3 ⊥ Q6_3|LI_2, T 0.21286266 1.571824e-02 0.0000000 0.9886218 

 LI_3 ⊥ Q6_3 |LI_1, LI_2 0.05008131 2.720926e-15 0.0547267 0.0796441 

 LI_1 ⊥ Q6_3|LI_2, T 0.22269962 2.439807e-02 0.0000000 1.0159435 

 LI_3 ⊥ T |LI_1, LI_2 0.50000000 4.306803e-01 0.0000000 2.0352330 

 LI_2 ⊥ T|Q6_3 0.26666667 4.3937728e-01 0.0000000 1.35522813 

Q7 LI_3 ⊥ Q7|LI_2, T 0.3191289 5.637935e-11 0.09567272 1.1311122 

 LI_3 ⊥ Q7 |LI_1, LI_2 0.1899978 1.703279e-05 0.02898381 0.7144245 

 LI_1 ⊥ Q7|LI_2, T 0.3247070 6.278524e-10 0.09564217 1.1500338 

 LI_3 ⊥ T |LI_1, LI_2              0.6060784 4.521448e-02 0.0000000 1.9975081 

   LI_2 ⊥ T|Q7                      0.26666667 4.3937728e-01 0.0000000 1.3552281 

Q8 LI_3 ⊥ Q8|LI_2, T 0.19503058 8.465151e-02 0.002718693 0.8999742 

 LI_3 ⊥ Q8 |LI_1, LI_2 0.03042047 1.114049e-17 0.034327899 0.1626523 

 LI_1 ⊥ Q8|LI_2, T 0.20445363 7.022645e-10 0.002718693 0.9016519 

 LI_3 ⊥ T |LI_1, LI_2 0.31127875 1.560396e-01 0.000000000 1.4658619 

 LI_2 ⊥ T|Q8 0.26666667 4.3937728e-01 0.000000000 1.3552281 

Q9 LI_1 ⊥ Q9|LI_2, T 0.25409662 7.746442e-03 0.03933819 1.0463495 

 LI_3 ⊥ Q9 |LI_2, T 0.05018762 1.419695e-08 0.03827399 0.2114937 

 LI_3 ⊥ Q9|LI_2, LI_1 0.26071557 1.484672e-02 0.03865232 1.0660845 

 LI_3 ⊥ T |LI_1, LI_2                  0.46031746 2.708597e-01 0.000000000 1.9380009 

 LI_2 ⊥ T|Q9                       0.26666667 4.3937728e-01 0.000000000 1.3552281 

Q10 LI_1 ⊥ Q10|LI_2, T 0.21700742 1.371356e-01 0.008979199 0.9848096 

 LI_3 ⊥ Q10 |LI_1, LI_2   0.03165096 7.715240e-18 0.0362478206 0.6863787 

 LI_3 ⊥ Q10|LI_2, T 0.21887990 1.557085e-01 0.0008979199 0.9787010 

 LI_3 ⊥ T |LI_1, LI_2 0.33333333 3.662299e-01 0.000000000 2.0001680 

 LI_2 ⊥ T|Q10                0.26666667 4.3937728e-01 0.000000000 1.3552281 

6.2 CIT Results Discussion 

When testing for conditional independence between two or more variables, it is required 
that their conditional dependency be zero [56]. Hence, with the use of the R tool of reference 
[56], as used in this work, the root mean square error of approximation (RMSEA) and the p-
value results that are close to zero (our p-value threshold is set at 0.05) validate the assump-
tions evinced by the designed SCM. The values of the RMSEA and p-value that deviate sig-
nificantly from zero or that are statistically significant reveal the model’s inaccuracy or lack of 
conditional dependency among them [3]. The algorithms process for performing this CIT 
validation for any EGRA SCM and our SENSE-EGRA SCM in the area of letter identifica-
tion task are shown in Algorithms 1 and 2. 

Thus the R tool produced by reference [56], has the functions LocalTests()and the 
PlotLocalTestResults(), which are used for the analysis of the CIT criteria. The function Lo-

calTests()test the CIT-identified criteria for each of the feature variables instance of 𝑋 (i.e., 

𝑋 = 𝑆𝑡𝑎𝑡𝑒, 𝐿𝐺𝐴, 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐴𝑔𝑒, etc.,) under the five conditional independence conditions 

identified in our SENSE- EGRA SCM of Equation (4), at a confidence interval of 95% for 
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all test cases as shown in column 2 (i.e., the label written as 2.5% & the 97%) of Table 4. 
While the PlotLocalTestResults() function plots the results of the localTests() function as 
shown in Figure 5. All the results indicate negative p-values and zero-scale RMSEA values. 
Thus, validating the correctness of our SENSE-EGRA SCM, as no conditional dependency 
exceeds 0.4 in all test cases, as shown in PlotLocalTestResults() graphical output of Figure 5; 
meaning their dependence is nearly zero. Thus, confirming and validating the correctness of 
our SENSE-EGRA SCM as shown in Table 4. 

 

Figure 5. Shows the graph result of the CIT criteria that plots the localTest results of Table 4 for each X instance 

7. Conclusion and Future Work 

7.1 Conclusion 

In this study, we have designed a novel application-based SCM from the background 
knowledge obtained from the American University of Nigeria (AUN), Yola’s project on the 
letter identification subtask of Early Grade Reading Assessment program tagged “Strengthen 
Education in Northeast Nigeria - SENSE-EGRA” which was sponsored by the United States 
Agency for International Development (USAID), which occurred between 2021 to 2202. We 
employed the conditional independence test (CIT) criteria for the testing and validating of 
the model’s ‘correctness, and the results show a near-perfect model. The main contribution 
of this work is in the explication of the theoretical insight into the structural causal model 
(SCM) framework and the development and correctness validation testing of an application-
based novel SCM for the SENSE-EGRA dataset, which could be used for the estimation of 
the causal impact of the intervention program under review. 

7.2 Future Work 

For future works, we shall use the developed SENSE-EGRA SCM alongside some ad-
justment and matching estimation techniques, such as ordinary least square regression adjust-
ment and propensity score by (weighting, stratification, and matching) to deal with confound-
ing and selection biases to estimate the causal inference of the SENSE-EGRA intervention 
program of the American University of Nigeria, Yola, Adamawa State, Nigeria under the 
sponsorship of USAID. 
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