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Abstract: Besides the inherent benefits of exchanging information and interactions between nodes on 

a social graph, they can also become a means for the propagation of knowledge. Social graphs have 

also become a veritable structure for the spread of disease outbreaks. These and its set of protocols are 

deployed as measures to curb its widespread effects as it has also left network experts puzzled. The 

recent lessons from the COVID-19 pandemic continue to reiterate that diseases will always be around. 

Nodal exposure, adoption/diffusion of disease(s) among interacting nodes vis-a-vis migration of nodes 

that cause further spread of contagion (concerning COVID-19 and other epidemics) has continued to 

leave experts bewildered towards rejigging set protocols. We model COVID-19 as a Markovian process 

with node targeting, propagation and recovery using migration-interaction as a threshold feat on a 

social graph. The migration-interaction design seeks to provision the graph with minimization and 

block of targeted diffusion of the contagion using seedset(s) nodes with a susceptible-infect policy. The 

study results showed that migration and interaction of nodes via the mobility approach have become 

an imperative factor that must be added when modeling the propagation of contagion or epidemics. 

Keywords: COVID-19; SI-graph; pandemic propagation; diffusion models; small-world graphs; SIS; 
SIR. 

 

1. Introduction 

A disease refers to a disorder that impedes performance or a deviation in the structure 
and functioning of a system [1]. It is also a harmful impediment to a system's structural norms 
or function. Commonly associated with physical injury, it occurs in a specified location [2] 
and often yields specific symptoms that appear [3] to indicate abnormal conditions inherent 
in such a system [4], [5]. Diseases can morph into contagion, spreading via a medium that 
includes fomites, oral (injection), direct contact, aerosol, and vector-borne [6]. Its diffusion 
spread within a society (comprised of various actors/agents) – often yields a regular spread 
of contagion, epidemic, or pandemic. It can become an epidemic directly impacting society 
[7]–[9]. Studies today are geared towards modeling propagation tasks on a social graph of 
connected actors to investigate relations, the structure, and underlying features of interest 
[10]–[13]. It can exist in 4-forms: hereditary, non-hereditary, deficiency, and infectious [14].  

Movement of these actors/agents – plays a critical and significant role in the transfor-
mational process [15], [16] of the social graph to help de(escalate) local disease(s) outbreaks 
as they morph into epidemic cum pandemics, and vice versa. And thus, it continues to ne-
cessitate the inclusion of human migration and interaction into every contagion model – to 
effectively simulate disease cum epidemic outbreaks and to implement a dependable, dynamic 
framework as future preventive programs and policies for any contagion [17], [18]. With the 
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unfettered, sporadic movement of nodes (on a time-variant, social-graph with the probability 
distribution of nodal observations), these can portend some issues to include: (a) nodal expo-
sure to diseases (i.e., targeting), (b) diffusion (i.e., spread of infection), and (c) rate of recovery 
(i.e., time taken for infected nodes to recover depending on their adoption/susceptibility 
level(s) [19].  

Our study wishes to address such problems using the movement-interaction-return en-
semble that models nodal targeting and exposure to disease/contagion to seek its rate of 
propagation with exposure to seed-nodes on the social graph as well as compute the expected 
recovery rate and time of susceptible-infect (SI) nodes vis-à-vis the nature of the disease cum 
contagion. 

2. Review of Related Literature(s) 

2.1. Agent-Based Modeling on Social Networks 

A social graph is a collection of networked nodes or actors whose interaction with each 
other ripples formal changes in the nodal observations in relation to their exposure to an idea 
or innovation. Thus, it advances learning as the innovation diffuses within the structure's 
nodes [20]. A social graph ripples learning changes propagated across nodal relations as it 
seeks to explain structural theories of observed patterns and analyze nodal (local) features 
that eventually morph into global trends [21] via nodal interactions that finally yield a social 
convergence. These global trends manifest explicitly as nodal ties. Thus, as learning occurs, 
each node and its relations seek to (re)shape via social interactions – each graph over time to 
enable the adoption of innovation (i.e., in this case, disease cum contagion) [22].  

A graph 𝐺 =  (𝐸, 𝑉, 𝑤) is a structure where each node 𝑖  𝑉, with a corresponding set 
of links (i.e., ties) where each 𝑚  𝐸, and has a corresponding assigned weight (𝑤) called 

the cost or penalty of interaction. Its ties/link, measured using dyads 𝐷 [23], can either be 
self-looped, singly-linked, or multi-linked. Each graph G is poised with 2-points: (a) to objec-
tify how these nodal structures evolve, and (b) to understudy local features that cascade social 
processes and specify how we can exploit/explore these local features via nodal interaction(s) 
[24]. With the society as our case in point, nodal migration and interactions (among a set of 
𝑉) are imperative as they will provide lessons and measures to help combat diseases/conta-

gions (i.e., innovation) as these nodes interact (via a set of links/ties 𝐸), and ripples within G 
– a series of corresponding associated costs (𝑤) therein [25]. As local properties morph onto 
global patterns – modeling migration-interactions can provide crucial knowledge in planning 
the future states cum scale of an event [26], [27]. Such models become tools to yield insight 
about the future, with predictions to yield timely insights about the velocity and veracity of a 
probable event [28]. The reliability of the generated results is best seen as prophesies/fore-
warnings rather than predictions and is open to questioning as either myths or fictions [29]–
[32]. 

At the crux of nodal interactions is the agent-based model (ABM). This is best illustrated 
with a flock of birds flying as a single system in tight formation. With no leader bird, they 
gracefully choreograph their movement such that each bird responds to the flight pattern of 
its immediate neighbor; And results in a highly-nonlinear patterned, hypnotic rhythm [33], 
[34]. We model such interaction as a sum of local feats represented in 3-rules, namely: (a) 
separation or collision avoidance in which each bird distances itself from others, (b) alignment 
for which each bird’s direction and velocity are matched by its immediate neighbor, and (c) 
cohesion for which each bird’s preserves a perceived equidistance of both the flock and its 
immediate neighbor to realize such flight formation with a steady paced, velocity and direc-
tion. Each bird is thus, as an actor or agent, modeled with local features whose interaction 
with the others yields such realistic flight formation or pattern [35]–[40].  

Thus, an ABM can yield or be used to represent a dynamic, self-organized, complex, and 
non-linear framework that cascades local, nodal properties as processes learned by interacting 
actors/agents in response to a variety of external/internal influences (shocks) – to yield a 
global pattern eventually [41]–[43]. ABM’s potential focuses on emerging processes to yield a 
structure that (a) posits a dynamic ensemble shaped via observing nodal interactions, and (b) 
it tests learning as a social convergence that manipulates the network structure using features 
such as its nodal stratification, graph topology etc [27], [44]–[47]. 
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2.2 Diffusion Framework Models 

For a social network, innovation (ideas or products) can diffuse across a graph via seed-
node actions for tight clusters on a typical susceptible-infect (SI) case. The seed-node is a set 
of infected actors that have adopted an innovation (in this case, a disease). Other nodes in 𝐺, 
yet to adopt the innovation, are initialized, and can take any 3-states, namely: (a) susceptible 
– here, a node can be exposed to an innovation; But has a threshold limit for which aids it to 
either accept/reject an innovation, (b) infected – here, the node is exposed, and is influenced 
by its immediate neighbor to accept the innovation having exceeded its threshold limits. Thus, 
it becomes infected [48], [49] and has the ability (i.e., external shock) to influence other nodes 
to either accept/reject the innovation and (c) be removed – here, the infected node is placed 
on treatment, so that in time – the infected node recovers; The same treatment is placed on 
all other immediate neighbors that are infected till either a stop criterion is reached or no 
more infected node(s) exists on the social graph and/or network [50], [51].  

With this in mind, the susceptible-infect (SI) diffusion ensemble can be represented in 
2-classes, namely: (a) SI-Susceptible (SIS) and (b) SI-Remove (SIR) [52]–[55]: 

1. SI-Susceptible: At time t = 0, G inserts into it a set of nodes (seed-nodes) (i.e., infected 
and have accepted/adopted the innovation), such that an infected node 𝑥 has only a 

chance at any time 𝑡, to be exposed its immediate neighbor node 𝑦. With 𝑦 exposed – 

the probability that 𝑛 the node 𝑥 convinces node 𝑦 yields 𝑃𝑥𝑦 – so that if 𝑥 succeeds, 

then 𝑦 becomes infected at time 𝑡 + 1; Else, 𝑦 may reject now – only to accept later 

(i.e., accept either from 𝑥 or from another node 𝑧). Also, 𝑦 can reject at time 𝑡 + 1 
and then, later, accept at time t+2. This can go on and stop after either 𝑛-steps, or if 
there exists no node(s) to be exposed. We can also note that a node can be exposed any 
number of times such that even after such node is treated and has recovered – when 

exposed, it becomes susceptible again to be infected [56], [57]. Thus, if 𝐺 has M-nodes 

with 𝑑-seedset (𝑀𝑑) placed on 𝐺, at complete diffusion – it yields 𝑆(𝑀𝑑 , 𝐺) as the 
maximum expected number of adopters as in Equation (1) As 𝐺 evolves, the innovation 

either propagates or dies; And each actor accepts the innovation with a probability  at 

rate 


𝛿
, or rejects with probability 𝛿 This yields a threshold 

µ

𝛿
 that sufficiently aids quick 

recovery of the nodes in 𝐺 [5], [58]–[62]. 
2. SI-Remove: At time t = 0, G inserts into it, a set of nodes (seednodes), such that an 

infected node x has only a chance at any time t, to be exposed its immediate neighbor 
node y. When an infected node x is removed (treated), it is no longer susceptible and can 
never become infected again even if/when re-exposed to an infected neighbor. Thus, 
node y if exposed may not become infected (only if it has been previously treated); Yet, 
if node y has never been exposed; it remains susceptible until treated of the innovation. 
The probability that node x infects y remains Pxy – at time t+1. Again, with treatment 
placed on all the nodes that have(not) been exposed, recovery commences even as dif-

fusion goes on. This goes on and stops after either 𝑛-steps, or if there exists no node(s) 
to be exposed. This implies that each node, once recovered, can never be susceptible, 

and each node is exposed exactly once. Thus, if 𝐺 has M-nodes with 𝑑-seedset (𝑀𝑑) 

placed on 𝐺, it yields 𝑆(𝑀𝑑 , 𝐺) as the maximum expected number of adopters – based 

on random choices of the SI-diffusion model and the nature of 𝐺 in use. Equation (1) 
yields the maximum expected number of adopters.  

𝑆𝑑(𝐺) =  𝑚𝑎𝑥
𝑀𝑑

 𝑆(𝑀𝑗, 𝐺) (1) 

𝐴𝑑 = 𝑎𝑟𝑔 max
𝑀𝑑

 𝑆(𝑀𝑑 , 𝐺) does an adaptive seedset make a choice, And 𝑆𝑑(𝐺) is the 

rate of contagion diffusion in G. Thus, it yields Equation (2) that shows the contagion 
spread with the randomized seedset to denote the expected propagation and spread over 
all possible positions with d-innovations placed on G as [39], [63]. 

𝑆′
𝑑(𝐺) =  𝐸𝑀𝑑

[ 𝑆(𝑀𝑑, 𝐺)]   (2) 
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3. Proposed Material and Method 

3.1. Data Gathering 

Nigeria is arguably in Africa, the most strategic and influential nation – in lieu of her 
being the most populous black nation, her vast natural resources of hydrocarbon(s) vis-à-vis 
her government’s commitment to anti-corruption and to the unity of Africa. The abundance 
of minerals has continued to foster Nigeria’s heavy dependence on her oil, which accounts 
for over 41% of her Gross Domestic Product and 90% of her export revenues [51], [64]–
[66]. The study uses the COVID-19 contagion (as its innovation), and models Delta State as 
a small-world graph with diffusion time as the lockdown from April 2020 to March 2022. Of 
the 270-wards in Delta State, we use 27-wards (as clusters) to introduce the seedset as in Table 
1. 

Table 1. Network Parameters with sampled COVID-19 epidemiological features 

Network Features Corona Virus Contagion 

Total number of Clusters 27 wards (cluster) 
The age range in Population 456,342 persons/contacts 

Introduced Seedset 5-seedset nodes per ward 

Diffusion Time (𝑡 =  0, 1, 2, 3, … , 𝑛 − 1) April 2020 to March 2021 

Probability Density Distribution  = 0.5346 and  = 0.34 
Average Time of Adoption Six weeks 

Lowest/Highest Saturation (Final number of 
Adopters) 

36% / 80% at 𝑡 >  0 and 𝑡 =  𝑡 –  1 respec-
tively 

3.2. Problem Formulation 

The propagation spread size of COVID-19 on society is a function of nodal migration 
and return, social interaction of (un)participatory nodes and other accompanying epidemio-
logical features. The contagion size is that fraction of the population that remains infected 
even if and when the contagion has reached a stationary state (i.e., time has expired, and there 
are no more nodes to infect). A sample contagion size is a seedset introduced into the frame-
work as in Table 1 [67]–[69]. Nodes are represented as migrants and residents via relations to 

yield the appropriate/requisite ties and tie-strength to 𝐺. Residents yield stronger ties; while, 
migrants yields weaker ties with nodes on 𝐺. Tie-strengths are measured using dyads 𝑑, and 

exists in 𝐺 to propagate cluster formations as they morph into communities. Tues are all the 

pair of interactions between n-nodes with m-ties to form the matrix 𝑇 of 𝑛 × 𝑚 in 𝐺) [70], 
[71]. Each tie formed helps each node to overcome data issues of retrospective accuracy and 
acts as data feedback to benefit nodes during migration and return. Thus, we compute tie-
strength (as a precursor to acceptance/adoption of an innovation) modeled as a linear com-

biner to yield Equation (3) – with 𝑁𝑖 as the structure of 𝐺, 𝑅𝑖 is all predictive variables, 𝐸𝐼𝑖 

are all shocks in pairs dyadic relations, 𝑒𝑖 is error term for maximization, and 𝐷𝑖 is all dyadic 
pairs. 

𝑆𝑖 = ∝  +𝛽𝑅𝑖 + 𝛾𝐷𝑖 + 𝑁𝑖 + 𝐸𝐼𝑖 +  𝑒𝑖 (3) 

3.2. Proposed Movement-Interaction-Return (MIR) Contagion Framework 

We model the movement-interaction-return contagion framework as a variant of the 
Markov Model. It models graph 𝐺 as a set of nodes with state transition ties (i.e., a series of 
chaotic and dynamic chain sequences with assigned probabilities as the cost associated with 
state transitions). This variant addresses the fundamental issues raised therein the Markovian 
process via the (a) use of positional data (alignment) in the sequences (i.e., resident and mi-
grant nodes) and (b) use of a null transition state(s) to match insert/delete (migration) se-
quences for observed transition [72], [73]. Thus, for the nodal observations, the probability 
distribution cum state transition for the generated sequences of the task at hand includes [51], 
[74]–[78]: 

1. Targeting with seedset: Given observations m and n, we seek to determine 𝜆 =
 (𝐴, 𝐵, 𝜋) that best fits the sequence. We train the ensemble to fit the data using the 
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features of interest. HMM training requires no aprior assumptions about the model other 

than outline parameter 𝑁 and 𝑀, which specifies the model's size. 

2. Rate of Infection Diffusion: We compute the probability that the model produces a se-
quence given that Equation (1) and (2) holds true with  =  (𝐴, 𝐵, 𝜋)  and compute 

𝑃(𝑂/ 𝜆). 

3. Task-3: We uncover HMM 𝜆 =  (𝐴, 𝐵, 𝜋) and observation sequence 𝑂 to determine 

the most likely sequence of states 𝑋 =  (𝑥1, 𝑥2, . . . , 𝑥𝑇) that could have produced the 
sequence. 
We propose the extended movement-interaction-return (MIR) framework to consist of 

three phases, namely: (a) movement, (b) interaction, and (c) return, respectively [79]–[81]: 
1. Movement – 𝐺 is populated with actors from a variety of geographical locations. Each 

can migrate (to new positions) across 𝐺 with a probability 𝑃, and are etched with be-
havioral feats/roles for residents/migrants in a small-world graph to indicate their mo-
bility pattern of choice. 𝐺 uses the parameter 𝑀𝑗

𝑖𝑘 to denote nodal movement cum mi-

gration such that 𝑅2
1 (as in Figure 1b) denotes a node in cluster-1 migrating to cluster-2; 

while, 𝑅1
3 denotes node in cluster-3 migrating to cluster-1; And so on. This governs mi-

gration flow to describe the rate of nodal mobility 𝑖 from the sub-𝐺 𝑗 to another 𝑘 as 
in Equation (4). 

𝑀𝑗
𝑖𝑘 =  𝛿𝑗

𝑖𝑅𝑘
𝑗

+ (1 + 𝛿𝑗
𝑖)𝛿𝑘

𝑗
 (4) 

This feature ensures that resident nodes can migrate, and migrant nodes not in their 
place of residence must be forced to stay at their temporal residence until they are re-
migrated home. As such, movement holds – both migrant and resident nodes can/may 
exchange innovation (data) and learn via interaction given in Figure 1a and 1b, respec-
tively. 

  

Figure 1. Nodal interaction (a) Nodal clusters at time 𝑡 =  0; (b) Movement of nodes at 𝑡 =  1. 

2. Interaction: With a time-varying SIS in 𝐺, nodes interact with their immediate neigh-

bors. Thus, if and when an infected seedset node 𝑥 is exposed to 𝑦 at 𝑡 + 1, it has just 
one chance to infect node 𝑦. 𝑃 is the probability rate at which the susceptible node 𝑦 

adopts the contagion from its neighbor 𝑥 – given by the infectivity rate 𝜆. Also, a con-
tagion may die, node recovers with treatment, or may continue propagating (if un-
treated). The probability the contagion dies after treatment within its host carrier (i.e., 

infected node 𝑥) is given by the recovery rate 𝜇 as seen in Figure 2 [82]. 

 

Figure 2. Nodal interaction with rates of infectious (𝜆) and rate of recovery (𝜇) 

t = 0 t = 1 

𝑹𝟐
𝟏 

𝑹𝟏
𝟐 

𝑹𝟑
𝟏 

𝑹𝟏
𝟑 

𝑹𝟑
𝟐 

𝑹𝟐
𝟑 

t = 2 
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3. Return: Migrants are forced either to stay at their temporary location or return with a 
probability of𝛾−1. This feat accounts for time convergence, where such migrants become 
destination node(s). With 𝛾−1 =  1(𝛾−1) –  𝐺 recovers to the original MIR form and 
state (i.e., migrants have returned). With 𝛾−1  ≠  1(𝛾−1) – nodes lose data about their 

residence and become steadily re-distributed across neighbor locations [10] with 𝑡 –  1 
is as in Figure 3. 

 

Figure 3. Schema model view of the Movement-Interaction-Return (MIR) Ensemble 

3.3. Experimental Procedure 

Each nodal exposure yields an updated, likely expected maximum number of adopters 
for the contagion. This implies that the ensemble yields an updated, optimal solution based 
on re-computed thresholds of exposed cum infected nodes. This update is achieved via the 
following steps as thus:  
a. Step-1: We normalize all nodal position(s) as in the algorithm listing 1, within the proba-

bility limits and range [0 − 1],  
b. Step-2: We randomly swap each node’s position using the roulette swap type to ascertain 

its rate of adoption/acceptance 
c. Step-3: With each nodal position reset, we re-computed the new threshold for 𝐺. This 

process continues till either all nodes are infected or the stop time criterion of 6 weeks is 
reached. 
 

Algorithm 1. CoDiSoMIRE 
INPUT: Number of nodes (𝑁); Number of Ties (𝑀).  

OUTPUT: Print final adopters for network structure (𝑁𝑖𝐺). 

1: Set initial Ties = 10+; Cluster Structure = 25+ 

2: Initialize 𝐺 with the probability distribution 𝑃𝜃,𝐺(𝐺 = 𝑔) =  
exp [𝜃𝑡𝑢(𝑔)]

𝑐(𝜃,𝐺)
 

3: Node_position: set each with expected adopter Min-Max bounds → 𝐹(𝑛 − 𝑛𝑜𝑑𝑒𝑠 ∗  𝑚 −
𝑡𝑖𝑒𝑠) 

4: Seedset choice: select randomly 

5: While the node is not exposed 

6:    choose current_node position in seedset as the best nodal position in 𝐺 

7: Dyadic and Predictive variable(s): set (+𝐷𝑖) and (+𝑅𝑖) 

8: Compute nodal-ties as function (+𝑅𝑖 , +𝐷𝑖 , +𝑁𝑖𝐺, and +𝐸𝑙𝑖) 
9: For each n-node Do 

10:     if node_seedset  nodal personal network then 
11:          approve_node_list (seedset) 
12:     end if  
13: end for-each  
14: Compute the adoption of contagion within the network structure using the linear combiner: 

𝑁𝑖(𝐺) = 𝑃𝜃,𝐺 + 
0


𝐿
+ 1𝑀𝑒𝑑𝐿 + ∑ ∑𝑡(𝑠 − 

𝐿
)𝑡

𝑖∈𝐿

𝑡−1

𝑡=0

+ 5𝑀𝑖𝑛𝐿 +  6𝑀𝑎𝑥𝐿 
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15: Compute nodal disposition with exposure and infection/adaption of innovation at 𝑡 ≥  0 as: 

𝑀𝑛𝑒𝑤 = 𝑤 ×  𝑀𝑜𝑙𝑑 + 𝑐1 × 𝑟𝑎𝑛𝑑() × [(𝑃𝑖)/𝑇]  +  𝑐2 ×  𝑟𝑎𝑛𝑑() × [(𝑃𝑛)/𝑇)] 
16: Update nodal positions as: 𝑃𝑛𝑒𝑤  =  (𝑃𝑜𝑙𝑑– 𝑀𝑛𝑒𝑤) 

17: // Until the stop criterion is met, or all nodes are exposed and infected: Stop 

4. Results and Discussion 

4.1. Result Findings 

With each solution found, the ensemble restarts with a randomly selected seedset choice 
in 𝐺. Nodes with a threshold >  0.5 are chosen as the fit solution(s). The process stops 

if/when all nodes are exposed at the time  𝑡 –  1, or till a node with a threshold value ≤
 0.49 is reached. Thus, investigating and resolving criteria for targeting – as being the reasons 
to aid the adoption of an innovation vis-à-vis its propagation of COVID-19 – irrespective of 
the protocols in place, the results are shown in Table 2 using Equation (3). 

Table 2. Simulated ties of expected maximum final acceptance/adoption 

Variables  +𝑹𝒊 +𝑵𝒊 +𝑫𝒊 𝑬𝑳𝒊 
Threshold Propagation 0.67 0.94 0.97 0.93 0.34 
Distribution Density 0.47 0.87 0.88 0.91 0.37 

Graph Support 0.43 0.90 0.92 0.95 0.21 
Reciprocity 0.38 0.81 0.76 0.72 0.13 

Structural Distance 0.09 0.80 0.82 0.86 0.34 

 
The result agrees that the advent of the seedset yields a uniformly distributed acceptance 

of the COVID-19 contagion in 𝐺. This is seen from the values that with a mean structural 
distance of 0.09 (using approximately 10%) of population cluster as seedset, yields a threshold 

spread of 0.67 (i.e., 67%), with a dyadic interaction +𝐷𝑖 of 0.93 (i.e., 93%) time convergence 
and a network structure +𝑁𝑖 of 0.97 (i.e., 97% of infected nodes) as final adopters. This 

suggests that a highly clustered 𝐺 will ease propagation time as a higher cluster coefficient 
(i.e., formation of cliques) further promotes spread ease along each node’s personal graph – 
even with the set protocols and measures to slow the propagation of COVID-19. 

However, with the migration pattern infused into such a tightly knit, cohesive G as well 
as accounting for each node’s personal graph vis-à-vis the loose network structure introduced 
with migration – this slows down the rate of infection as seen in Table 4 of final adopters, a 
0.95-significance (95%-significance) using Equation (1) and (2). 

Table 4. Tie strength on the time of final adoption 

Dependent Variables Shocks 
Personal networks via direct ties 

Final adopters 
 +𝑹𝒊 +𝑵𝒊 +𝑫𝒊 𝑬𝑳𝒊 

Early 4.1 0.76 0.31 1.6 12.7 9.9 24.2% 
Early Majority 20.1 0.57 0.23 8.8 11.2 10.6 30.6% 
Late Majority 12.1 0.46 0.21 13.7 10.1 10.0 33.8% 

Laggards 6.5 0.32 0.20 1.9 6.1 3.4 11.4% 
Actor Network 42.8   27.3 30.1 42.6 100% 

 
The result shows that even with the seedset, laggards account for 11.4% of 𝐺. It is found 

to have been skewed considerably from a proportion of non-adopters vis-à-vis the datasets 

used. Laggards were found not to be infected at time 𝑡 –  1 (stop criterion) for the study. It 
was hoped that at this time, all nodes may completely adopt the innovation (COVID-19) even 
with the set protocols cum its adherence. It can be attributed to features that residents cannot 
abandon their homes just as migrants are quarantined (and cannot be allowed to move back 
to their homes). Some nodes were also found to remain indifferent to the innovation as they 
neither rejected nor adopted it due to higher threshold(s). 

4.2. Discussion of Findings 

At time 𝑡  0 of propagation, nodes become exposed to seedset nodes infected with the 
contagion. Migration ensures that more nodes become exposed and easily adopt/accept an 



Journal of Computing Theories and Applications 2023, vol. 1., no. 2., Ojugo, et al. 170 
 

 

innovation due to shocks (such as the external influence of the need for acceptance to the 

newly migrated society). It directly impacted the network’s threshold, disposing 𝐺 towards a 
positive trend (for nodes to accept the innovation); Although each nodal graph displays a 
stronger resolve to reject the COVID-19 contagion. The ease with cluster formation, conse-
quently, eased structured learning and interaction as dyadic ties advanced improved nodal 
retention of data learned in nodal memory in the network’s quest for optimal solution. 

The random exchange of data in a node’s personal graph encourages data swap – and, 
in time, yields an improved nodal disposition for all node-set. The more exposed each node 
becomes, the more interaction with learning and retaining knowledge that improves each 
node’s disposition and personal network; And in turn, impacts the graph as community-based 
shocks (global patterns). This agrees with [20], [46], [83], [84]. The adoption of the MIR-
ensemble has become imperative and crucial as a threshold parameter to study network struc-
tures vis-à-vis the lessons learned from the COVID-19 pandemic. A node’s adoption time 
for a specific innovation is proportional to its threshold limits and shocks/influences im-
pacted upon the node by its graph.  

The advent of seedset rippled in by migration mobility ensured that over 80% of active 
nodes became infected prior the stop criterion as in Table 4 with the (early, early majority and 
later majority) adopters of the innovation as reflected by both the nodal and graph thresholds. 
This agrees with [85], [86]. Finally, a high threshold value indicates such a node/graph possess 
high tolerance to reject the contagion, as experienced with the laggard nodes [63], [87], [88]. 

5. Conclusions 

Our contributions include thus: (a) we define ties as a dimension in all social-networks 
𝐺, (𝑏) we acknowledged and modeled the network structure as a linear function with the 
probability distribution of nodes in the search domain being considered, and (c) we used the 
MIR ensemble with mobility pattern as a predictor for both nodal and graph’s threshold. Our 
result extends the realization that help modulate the social features within a graph vis-à-vis 
filtering actor relations through clusters/cliques, and with recourse to both the properties of 
the node and the connecting link itself that enables actors/nodes interact with each other. We 
defined these properties as dimensions in the network structure itself. 
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Appendix: Notation List 

– +𝐷𝑖 as dyadic pair relations,  

𝜆 as infectivity rate,  
𝛾 as nodal return probability,  
 as the rate of nodal recovery from contagion. 
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