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Abstract: This research aims to evaluate and compare the performance of several deep learning archi-

tectures, especially InceptionV3 and InceptionResNetV2, with other models, such as EfficientNetB3, 

ResNet50, and VGG19, in classifying rice leaf diseases. In addition, this research also evaluates the 

impact of using data augmentation on model performance. Three different datasets were used in this 

experiment, varying the number of images and class distribution. The results show that InceptionV3 

and InceptionResNetV2 consistently perform excellently and accurately on most datasets. Data aug-

mentation has varying effects, providing slight advantages on datasets with lower variation. The find-

ings from this research are that the InceptionV3 model is the best model for classifying rice diseases 

based on leaf images. The InceptionV3 model produces accuracies of 99.53, 58.94, and 90.00 for da-

tasets 1, 2, and 3, respectively. It is also necessary to be wise in carrying out data augmentation by 

considering the dataset's characteristics to ensure the resulting model can generalize well. 

Keywords: Data augmentation impact; Image classification; Image recognition; Rice leaf disease clas-

sification; Transfer learning. 

 

1. Introduction 

Rice is the main staple food for Indonesians and is widely consumed by many other 
countries worldwide. Based on data released by the United States Department of Agriculture 
(USDA) in July 2023, the level of rice consumption in Indonesia reached 35.2 million metric 
tons[1]. This makes Indonesia one of the countries with the most considerable rice consump-
tion levels in the world[2], behind Bangladesh, India, and China, apart from being one of the 
largest rice consumers in the world. Indonesia also occupies a position as one of the largest 
rice producers in the world. In 2019, Indonesia's rice production was impressive, reaching 
34.7 million metric tons. However, in 2022, Indonesia's rice production will decrease to 34 
million metric tons. The decline in rice production in Indonesia is caused by several factors, 
one of which is extreme weather conditions, which trigger the development of disease in rice 
plants. Each type of disease requires different treatment, and if treatment is late or inappro-
priate, it can result in greater losses. 

The conventional way to identify diseases in rice is usually based on visual observation 
by experienced experts. This, of course, has some disadvantages, not only can the expert be 
wrong, but it is also less efficient. Based on these problems, many researchers have studied 
automatic rice disease diagnosis based on pattern recognition and machine learning[3], [4]. 
Currently, the development of the application of Machine Learning has brought the emer-
gence of a further science[5], namely Deep Learning. Deep learning is an advanced machine 
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learning technique that successfully trains on large amounts of data, automatically learns input 
features, and provides output based on decision rules[6]–[9]. One of the most popular algo-
rithms in deep learning is the convolutional neural network (CNN). CNNs can be adapted to 
specific needs by manually arranging appropriate layers [10]–[12]. However, transfer learning 
techniques are becoming popular and often used in many studies. Transfer learning is the 
process of pre-initializing a model using weights obtained by training a different model on a 
larger dataset[13]. This technique is derived from knowledge gained from a training dataset 
and is used to train a model on a different but relevant task or field, where this concept is 
generally known as a pre-trained model. Some of the advantages offered by this method in-
clude increased model accuracy, higher training time efficiency, and better performance[14].  

Conventionally, research on disease identification in rice leaves generally focuses on a 
limited number of datasets. For example, research conducted by Lu et al. [3] proposed using 
a manually configured CNN to classify 500 rice leaf disease images and achieved an accuracy 
of 95%. In another study, Shrivastava et al.[15] proposed using AlexNet for feature extraction 
and SVM for the classification of 619 rice leaf disease images, which produced an accuracy of 
91.37%. Ahad et al.[13] also conducted similar research using several architectures such as 
DenseNet121, InceptionV3, MobileNetV2, Res-Next101, ResNet152V2, and SeresNext101 
to classify 900 rice leaf disease images, which were then augmented to produce a total of 
42,876 images. This research shows that DenseNet121 and InceptionV3 can produce the 
highest accuracy of 97%. Meanwhile, Krishnamoorthy et al. [16] also conducted research by 
proposing the use of the InceptionResNetV2 architecture to identify diseases in rice plants. 
In this research, the dataset used consists of 5,200 images divided into four classes. The results 
of this research show that InceptionResNetV2 succeeded in achieving an accuracy level of 
95.67%. Based on the research results in several journals above, InceptionV3 and Inception-
ResNetV2 can produce promising performance. Apart from that, both architectures also have 
their respective advantages. InceptionV3, which consists of five convolution layers, one av-
erage pooling layer, two max-pooling layers, one Fully Connected (FC) Layer, and 11 incep-
tion modules, has the main advantage, namely its unique feature extraction capabilities, which 
enable it to extract features from images with various size through one level of convolu-
tion[10]. Meanwhile, InceptionResNetV2, which is a variant of the inception architecture that 
integrates the concept of residual connections, has the advantage that the residual connections 
technique used allows signals in the previous layer to pass directly through the following layers 
in the network, thereby facilitating the training process on the deep network [17]. Based on 
the background above, this research aims to: 
1. Assess and compare the performance of two main architectures, InceptionV3 and In-

ceptionResNetV2, in classifying rice leaf disease images and comparing several Efficient-
Net, ResNet, and VGG architectures. 

2. Evaluate the impact of using data augmentation on architectural performance in classi-
fying rice leaf disease images. 

3. Determine the architecture that provides the best results in classifying rice leaf disease 
images. 
The remainder of this paper is organized into four sections. Section 2 discusses related 

works; section 3 presents the proposed method and explains the architecture and augmenta-
tion techniques used in detail. Section 4 discusses the results and discussions that explain the 
findings obtained from the experiments. In the last section, a conclusion will be given, which 
provides a summary of the findings from the experiments that have been carried out. 

2. Related Work 

This section discusses in more detail some of the related research that inspired it, includ-
ing some mentioned in the introduction. A number of researchers have conducted research 
and studies in recent years to diagnose diseases in plants using machine learning and deep 
learning algorithms. For example, in research conducted by N. Krishnamoorthy et al.[16], the 
InceptionResNetV2 architecture was proposed to identify diseases in rice plants. In this re-
search, the dataset used consists of 5200 images, which are divided into four classes, namely 
leaf blast, brown spot, bacterial blight, and healthy. Preprocessing, which includes changing 
the pixel value scale to a range between 0-1, adjusting the image size to 224x224, and applying 
data augmentation, was also carried out in this research. The results of this research show that 
InceptionResNetV2 succeeded in achieving an accuracy level of 95.67% 
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Ghosal and Sarkar[18] conducted a similar study and proposed using VGG16 architec-
ture. The dataset used is 2,156 images and consists of four classes, namely leaf blast, leaf 
blight, brown spot, and healthy. The data preprocessing stage is carried out by resizing the 
image to a size of 224x224 pixels. Augmentation data such as zoom, rotation, and shift are 
also applied. As a result, the VGG16 architecture achieved 92.4% accuracy in 25 epochs. 

Ding Jiang et al. [19] also researched to detect disease in tomato leaf images. This re-
search uses ResNet50 to identify three common diseases that usually occur on tomato leaves: 
spot blight, late blight, and yellow leaf curl. The dataset used in this research has been resized 
to a size of 224x224 pixels and has a total of 6794 images after carrying out the data augmen-
tation process. After the training process was carried out for 24 epochs, the results showed 
that the model created with the ResNet50 architecture achieved an accuracy of 98.0%. 

Ümit Atila et al.[20] conducted using several versions of the EfficientNet architecture to 
classify diseases on plant leaves from several species. The dataset used in this research totaled 
61,486 images after data augmentation and consisted of 38 different classes. As a result, the 
EfficientNetB5 architecture is the best among other EfficientNet architectures with an accu-
racy of 99.91% on the original dataset, while on the augmented dataset, EfficientNetB4 is the 
best with an accuracy of 99.97%. Based on some of the literature above, almost all research 
uses large datasets and data augmentation. Therefore, this research will further test whether 
these two things can significantly influence architectural performance. Experiments will be 
carried out using three datasets of different sizes and carried out in two conditions, namely, 
using data augmentation and without using data augmentation. 

3. Proposed Method 

This research consists of several stages, as shown in Figure 1. The dataset chosen in this 
research is public data to facilitate the comparison process. A more detailed discussion will 
be discussed in section 4. Next, augmentation is carried out specifically for data preprocessing. 
Furthermore, this section discusses the proposed model design in section 3.1, data augmen-
tation in section 3.2, and model evaluation techniques in section 3.3. 

 

Figure 2. Research stages. 

3.1. Model Design 

The initial step involves selecting a pre-trained architecture previously trained on a large 
dataset, such as ImageNet, and creating a base model using that architecture. This basic model 
is then set as non-trainable so that the learned representation does not change. Next, the input 
layer is created with image dimensions corresponding to each architecture's optimal size. 
These images are fed into a base model created from the previously selected architecture. The 
results from the previous layers are extracted, and global average pooling is carried out to 
produce global features. Next, these features are input for an output layer consisting of a 
Dense layer with a softmax activation function, producing predictions for the N desired cat-
egories. The final model is then compiled using the categorical cross-entropy loss function, 
Adam optimizer, and accuracy metrics. The training process is then carried out for ten epochs 
using the training dataset. Further hyperparameter settings are presented in Table 1. 

3.1.1. InceptionV3 

Inception V3 is the third release in the Evolutionary Deep Learning Architecture series 
developed by Google. This architecture consists of 42 layers and uses an input layer to receive 
images of 299 × 299 pixels. The highlight of this architecture lies in using the Softmax func-
tion in its final layer, which allows the model to produce output in the form of class proba-
bilities[21]. Table 2 shows the parameter settings for the InceptionV3 model used in this 
research. 

Data collections 

Preprocessing 

Model setting 

Data Splitting 

Training, 

Validation and 

Testing 

Evaluation 
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Table 1. Hyperparameter Model. 

Parameter Values 

Optimizer Adam (Learning rate = 0.001) 

Loss function categorical_crossentropy 

Metrics accuracy 

Batch size 32 

Epoch 10 

Table 2. Parameter Detail of InceptionV3. 

Layer(type) Output Shape Param# 

input_layer (InputLayer) [(None, 299, 299, 3)] 0 

inception_v3 (Functional) (None, None, None, 2048) 21802784 

global_average_pooling2d (GlobalAveragePooling2D) (None, 2048) 0 

output_layer (Dense) (None, 4) 8196 

Total params: 21810980 (83.20 MB) 

Trainable params: 8196 (32.02 KB) 

Non-trainable params: 21802784 (83.17 MB) 

 

3.1.2. InceptionResNetV2 

InceptionResNet V2 is a variant of the Inception architecture that integrates the concept 
of residual connections with the Inception architecture[17]. The residual connection tech-
nique allows signals in the previous layer to pass directly through the next layers in the net-
work, thereby facilitating the training process in deep networks. In InceptionResNetv2, each 
Inception block is followed by a filter expansion layer (1x1 convolution), which is used to 
increase the dimensions of the filter bank before summing with the input. This is necessary 
to compensate for the dimension reduction that occurs due to the Inception block. Table 3 
shows the parameter settings of the InceptionResNetV2 model used in this research. 

Table 3. Parameter Detail of InceptionResNetV2. 

Layer(type) Output Shape Param# 

input_layer (InputLayer) [(None, 299, 299, 3)] 0 

inception_resnet_v2 (Functional) (None, None, None, 1536) 54336736 

global_average_pooling2d_1 (GlobalAveragePooling2D)  (None, 1536) 0 

output_layer (Dense) (None, 4) 6148 

Total params: 54342884 (207.30 MB) 

Trainable params: 6148 (24.02 KB) 

Non-trainable params: 54336736 (207.28 MB) 

3.2. Data Augmentation 

Data augmentation aims to enrich and vary the dataset while increasing the diversity of 
information that can be learned by the model[22]–[24]. In this research, the data augmentation 
included width_shift_range and height_shift_range of 10% and zoom_range of 20%. This 
augmentation was chosen because it tends not to change the input image significantly and 
does not cause distortion that could change the meaning or appearance of objects in the 
image. More detailed augmentation settings are presented in Table 4. 

Table 4. Data augmentation parameter. 

Parameter Values 

width_shift_range 0.1 

height_shift_range 0.1 

zoom_range 0.2 
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3.3. Model Evaluation 

This research has two evaluation phases: evaluation at the training and validation stages 
as the first phase and evaluation at the testing stage as the second phase. In the first phase of 
evaluation, accuracy metrics will be used to measure the level of accuracy in training and 
validation. A loss function with the categorical_crossentropy parameter will also be applied 
to measure the difference between model predictions and actual labels in the training data. In 
the second evaluation phase related to the testing stage, several measurement metrics will be 
used, such as accuracy, precision, recall, f1-score, and specificity, which are calculated based 
on the confusion matrix. Then, the evaluation metric used as the main reference in assessing 
model performance is accuracy. These metrics are selected based on their suitability for situ-
ations when the distribution of classes in the data is relatively balanced. Meanwhile, other 
metrics such as precision, recall, f1-score, and specificity are considered more suitable for 
evaluating imbalanced data because they calculate model performance by considering values 
such as false negatives and false positives, so they are more relevant when the data has signif-
icant differences between the classes. Equation (1)-(5) are formulas used to calculate accuracy, 
precision, recall, f1-score, and specificity[25]–[27]. 

accuracy =
TP + TN

TP + TN + FP + FN
 (1) 

precision =
TP

FP + TP
∗ 100% (2) 

recall =
TP

FN + TP
∗ 100% (3) 

f1 − Score =
2

1
precision

+
1

recall

 (4) 

Specificity =
TN

FN + FP
 (5) 

True Positive (TP): The number of instances that genuinely belong to the positive class 
and are correctly classified by the model as positive. True Negative (TN): The number of 
instances that genuinely belong to the negative class and are correctly classified by the model 
as negative. False Positive (FP): The number of instances that genuinely belong to the negative 
class but are incorrectly classified by the model as positive. False Negative (FN): The number 
of instances that genuinely belong to the positive class but are incorrectly classified by the 
model as negative. 

4. Results and Discussion 

This research was conducted using three different datasets obtained from public dataset 
providers such as Kaggle, UCI Dataset and Mendeley Dataset. The experiments in this re-
search involved two different conditions, namely, using data augmentation and without data 
augmentation. Detailed information about the dataset used, including name, amount of data, 
and class name, can be found in Table 5 below. Sample images for each rice disease are pre-
sented in Figure 2. The sample images presented in Figure 2 were taken randomly from the 
three datasets. Furthermore, the distribution of each dataset is also presented in Figure 3. 

The datasets used in this study, as described in Table 5, vary widely regarding the number 
of images and class distribution. Dataset 1 has a fairly balanced distribution, with 5932 images 
divided into four classes, while Dataset 3 is smaller and unbalanced, with only 120 images 
divided into three classes. The images in Figure 2 show the different visual characteristics of 
each disease, while Figure 3 highlights the varying distribution of classes in each dataset. This 
diversity in dataset size and composition is important for evaluating the robustness of the 
proposed model, as it ensures the model is tested under various conditions, thereby increasing 
its generalization and reliability in real-world applications. By using datasets of various scales 
and class distributions, this study aims to assess the overall performance and robustness of 
the model in classifying rice leaf diseases. 
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Table 5. Dataset source and details. 

No. References Dataset details 

1 [28] Name: Rice Leaf Disease Image Samples 

 Number of images: 5932  

 Class: Bacterial blight, Blast, Brown Spot, Tungro 

URL: https://data.mendeley.com/datasets/fwcj7stb8r/1  

2 [29] Name:  Rice Disease Image Dataset 

Number of images: 2092 

Class: Brown Spot, Hispa, Leaf Blast, Healthy 

URL: https://www.kaggle.com/datasets/minhhuy2810/rice-diseases-image-da-
taset 

3 [30] Name: Rice Leaf Disease 

Number of Images: 120  

Class: Bacterial leaf blight, Brown spot, Leaf smut 

 URL: https://archive.ics.uci.edu/dataset/486/rice+leaf+diseases  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. Examples of diseases on rice leaves (a)Leaf Blast; (b) Bacterial Blight; (c) Brown Spot; (d) 
Tungro; (e) Hispa; (f) Leaf Smut 

 
(a) 

 
(b) 

 
(c) 

   Figure 3. Class distribution of each dataset (a) Dataset 1; (b) Dataset 2; (c) Dataset 3. 



Journal of Future Artificial Intelligence and Technologies 2024 (June), vol. 1, no. 1, Firnando, et al. 7 
 

 

In the next stage, the dataset is split into two parts, namely training data and testing data, 
with a proportion of 75% training and 25% testing. The training dataset is further divided 
into training and validation datasets, with a proportion of 75% and 25%, respectively. The 
training data undergoes an augmentation process to improve its performance. A sample ap-
plication of augmentation is presented in Figure 4. 

 

 

 

Figure 4. Sample augmentation results 

Next, normalization was carried out using rescaling to adjust the dataset scale to a range 
of 0-1, which aims to speed up the computing process. Additionally, the input image size is 
also adjusted to match the input_size of the architecture used. Specifically, the InceptionV3 
and InceptionResNetV2 models use the same input_size, namely 299 x 299. Next, the model 
training process is carried out using the training dataset (train_data) and testing dataset 
(test_data) which have been separated previously. In this training experiment, several hy-
perparameters were used, which are presented in Table 1. Next, samples of the training and 
validation process results on dataset 1 are presented in the scatter plot in Figure 5. 

  
(a) 

  
(b) 

Figure 5. Accuracy and Loss Graph on Dataset 1 (a) InceptionV3; (b) InceptionResNetV2 
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Figure 5 displays the accuracy and loss graph during the training and validation process 
for the InceptionV3 and InceptionResNetV2 models using Dataset 1. In the InceptionV3 
accuracy graph (Figure 5a), it can be seen that the training and validation accuracy increases 
gradually until it approaches 100% at the end of the training, indicating the model's capabili-
ties. to learn and generalize well. The InceptionV3 loss graph shows a steady decline, with 
shallow training and validation loss values at the end of training. This indicates that the model 
has no signs of overfitting or underfitting. Likewise, in the InceptionResNetV2 graph (Figure 
5b), a similar pattern of increasing accuracy is also visible, with training and validation accu-
racy almost reaching 100%. The loss graph shows a stable and consistent decrease, with low 
loss values at the end of training. This shows that the InceptionResNetV2 model can learn 
important features from the dataset without experiencing overfitting, although the plot is not 
better than InceptionV3. Overall, both models, InceptionV3 and InceptionResNetV2, show 
excellent performance in training and validation on Dataset 1. Both models show consistent 
accuracy improvement and stable loss reduction, indicating that both architectures are suita-
ble for the rice leaf disease classification task with the dataset used in this research. Next, the 
test results are measured using the confusion matrix presented in Figure 6.  

 
(a) 

 
(b) 

Figure 6. Confusion matrix results on Dataset 1 (a) InceptionV3; (b) InceptionResNetV2. 

Table 6. Classification of testing data for all datasets with various transfer learning models 

Model Akurasi Presisi Recall F1-score Specificity 

Dataset 1      

InceptionV3 98.04% 98.13% 98.06% 98.08% 98.12% 

InceptionResNetV2 97.64% 97.78% 97.62% 97.66% 97.61% 

EfficientNetB3 36.14% 38.89% 35.54% 27.94% 35.54% 

ResNet50 46.12% 70.13% 43.10% 31.54% 43.10% 

VGG19 79.84% 80.23% 80.33% 79.87% 80.37% 

Dataset 2      

InceptionV3 53.86% 57.85% 53.86% 54.83% 54.83% 

InceptionResNetV2 57.52% 59.73% 57.52% 57.10% 57.52% 

EfficientNetB3 32.52% 66.73% 32.52% 21.98% 32.52% 

ResNet50 36.79% 52.46% 36.79% 30.34% 36.78% 

VGG19 39.02% 41.56% 39.02% 35.56% 39.02% 

Dataset 3      

InceptionV3 86.67% 87.44% 85.83% 85.38% 85.83% 

InceptionResNetV2 76.67% 81.62% 77.78% 75.40% 77.77% 

EfficientNetB3 43.33 % 36.32% 37.22% 29.55% 37.22% 

ResNet50 43.30% 48.25% 45.56% 41.82% 45.55% 

VGG19 50.00% 59.68% 51.67% 49.77% 51.66% 
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Table 7. Classification of testing data for all datasets with various transfer learning models 

Model Akurasi Presisi Recall F1-score Specificity 

Dataset 1      

InceptionV3 99.53% 99.56% 99.53% 99.54% 99.52% 

InceptionResNetV2 98.99% 99.01% 99.12% 99.01% 99.01% 

EfficientNetB3 39.51% 50.05% 36.84% 26.84% 36.85% 

ResNet50 61.70% 61.76% 61.27% 60.68% 61.27% 

VGG19 81.12% 82.33% 81.41% 81.35% 81.41% 

Dataset 2      

InceptionV3 57.11% 59.98% 57.11% 56.73% 57.73% 

InceptionResNetV2 58.94% 63.11% 58.94% 58.88% 58.94% 

EfficientNetB3 30.49% 64.98% 30.49% 19.88% 30.48% 

ResNet50 36.59% 52.59% 36.59% 29.47% 36.58% 

VGG19 41.06% 41.58% 41.06% 39.73% 41.05% 

Dataset 3      

InceptionV3 90.00% 88.89% 89.17% 88.85% 89.16% 

InceptionResNetV2 83.33% 84.18% 83.61% 82.93% 83.61% 

EfficientNetB3 33.33% 77.78% 33.33% 16.67% 33.33% 

ResNet50 23.33% 50.00% 25.83% 19.81% 25.83% 

VGG19 53.43% 66.35% 55.00% 54.22% 55.00% 

 
The confusion matrix results in Figure 6 also appear satisfactory with minimizing errors. 

More detailed measurements are presented in Table 6. In Table 6, several measurements are 
also carried out using other popular transfer planning models such as EfficientNetB3, Res-
Net50, and VGG19 with standard tuning. Overall, InceptionV3's performance is superior on 
the first and third datasets, while InceptionResNetV2 is slightly superior on the second da-
taset based on recall, f1, and specificity, while InceptionV3's accuracy is still the best. Apart 
from that, an ablation study was also carried out to validate the data augmentation perfor-
mance and whether it positively or negatively affected classification performance. The results 
of classification testing on the dataset without augmentation are presented in Table 7.  

Based on the results presented in Table 6 and Table 7, it can be seen that the effect of 
data augmentation varies depending on the size and characteristics of the dataset used. In 
Dataset 1, data augmentation slightly decreases the accuracy of models such as InceptionV3 
and Inception-ResNetV2, but the models still show excellent performance. This shows that 
data augmentation does not benefit large and diverse datasets significantly. In contrast, on the 
smaller and less diverse Dataset 2, data augmentation appears to provide a slight advantage 
to the InceptionResNetV2 and InceptionV3 models, although the increase in accuracy is not 
very significant. This shows that data augmentation can help improve performance on da-
tasets with lower variation. However, on Dataset 3, which is very small, data augmentation 
actually reduces accuracy for all models. This may be due to the small size of the dataset, so 
data augmentation adds excessive variation and makes it difficult for the model to learn rele-
vant features. Overall, it is important to consider the dataset's characteristics before applying 
data augmentation, as the impact can vary depending on the condition of the dataset used.  

5. Conclusions 

This study evaluates the performance of several deep learning architectures in rice leaf 
disease classification and the impact of using data augmentation on model performance. The 
results show that the InceptionV3 and InceptionResNetV2 architectures excel in accuracy 
and generalization, especially on large and diverse datasets. The use of data augmentation 
produces varying results; on smaller, less diverse datasets, data augmentation can improve 
model performance, whereas, on small datasets, data augmentation can decrease accuracy due 
to the addition of excessive variation. Therefore, the choice of data augmentation technique 
must be adjusted to the characteristics of the dataset used. This research makes an essential 
contribution to understanding the use of deep learning models and data augmentation 
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techniques in plant disease classification. It offers practical guidance for developing more 
effective plant disease detection systems. 
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