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Abstract: This research aims to develop a robust diabetes classification method by integrating the 

Synthetic Minority Over-sampling Technique (SMOTE)-Tomek technique for data balancing and us-

ing a machine learning ensemble led by eXtreme Gradient Boosting (XGB) as a meta-learner. We 

propose an ensemble model that combines deep learning techniques such as Bidirectional Long Short-

Term Memory (BiLSTM) and Bidirectional Gated Recurrent Units (BiGRU) with XGB classifier as 

the base learner. The data used included the Pima Indians Diabetes and Iraqi Society Diabetes datasets, 

which were processed by missing value handling, duplication, normalization, and the application of 

SMOTE-Tomek to resolve data imbalances. XGB, as a meta-learner, successfully improves the model's 

predictive ability by reducing bias and variance, resulting in more accurate and robust classification. 

The proposed ensemble model achieves perfect accuracy, precision, recall, specificity, and F1 score of 

100% on all tested datasets. This method shows that combining ensemble learning techniques with a 

rigorous preprocessing approach can significantly improve diabetes classification performance. 

Keywords: Diabetes Classification; Ensemble Learning; XGBoost Meta-Learner; SMOTE-Tomek; 

Deep Learning in Healthcare.  

 

1. Introduction 

Diabetes mellitus is a major challenge in global health, characterized by its chronic nature 
and significant contribution to morbidity and mortality worldwide[1], [2]. According to the 
World Health Organization (WHO), the prevalence of diabetes is expected to become the 
seventh leading cause of death by 2030[3]. These projections emphasize the critical need for 
early diagnosis and intervention, which can substantially reduce the serious complications 
associated with this disease. Current statistical data reveal an alarming increase in the preva-
lence of diabetes globally, almost doubling since 1980, caused by increasing cases of type 2 
diabetes driven by obesity, aging, and unhealthy lifestyles[4], [5]. Early detection and accurate 
classification of diabetes can prevent many of these cases from progressing to serious com-
plications such as nephropathy, retinopathy, and cardiovascular disease. Unfortunately, the 
majority of cases of Non-Communicable Diseases, including diabetes, are difficult to diag-
nose at an early stage, leading to under-treatment of the disease and significant reductions in 
health outcomes[4], [6]. 

In developing medical applications for early diabetes detection, various classification 
methods have been utilized to improve the level of prediction accuracy. Several widely used 
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diabetes datasets include Iraqi Society Diabetes (ISD) [7], Abelvikas[8], and PIMA Indians 
Diabetes (PID) [9], [10]. Each diabetes classification method developed will have a different 
performance in each database. Previous research was able to easily classify the Abelvikas da-
taset with an accuracy of up to 1.0 only with traditional machine learning methods[3], [11]. 
Datasets from ISD are still relatively easy to classify, because they can produce an accuracy 
of up to 0.99 in research[12]. While the PID dataset is the most popular and challenging 
diabetes dataset, many studies, such as [3], [4], [12]–[16], are only able to produce prediction 
accuracy of around 0.69 to 0.885. Even in research [3] when the same method could work 
with an accuracy of 1.0 on the Abelvikas dataset, it only produced an accuracy of 0.75 on the 
PID dataset. This shows that the input dataset significantly affects the method's performance. 
Furthermore, research in [17], which used the PID dataset produced a model with an accuracy 
performance of up to 0.93, and research in [1,18] achieved an accuracy of around 0.98 with a 
deep learning-based method. This shows the development of increasingly sophisticated clas-
sification methods. However, developing a classification model that is more adaptive and 
sensitive to intrinsic data variations in different diabetes datasets is urgent, in this case in order 
to obtain robust and accurate performance in various datasets.  

Classification methods can generally be classified into three large groups: Machine 
Learning (ML), Deep Learning (DL), and Ensemble Methods. ML offers several approaches 
that have been used for a long time, such as decision trees, which are very easy to understand 
and interpret but are often prone to overfitting. Support Vector Machines (SVM) are very 
effective for high-dimensional data but are inefficient for large datasets because they tend to 
be slow[18]. Logistic Regression offers an easy-to-implement model and predicts results in 
the form of probabilities, but its performance suffers at complex and non-linear decision 
boundaries. DL, in this context through models based on Recurrent Neural Networks (RNN), 
provides unique capabilities in processing sequence or time series data, which is crucial for 
applications such as electronic medical records[19]. RNN, by default, can work well for tem-
poral data but often experiences vanishing gradient problems. Other RNN methods, such as 
Long Short-Term Memory (LSTM) are more sophisticated because they are able to overcome 
this problem with gates that control the flow of information, making them better at learning 
long-term dependencies. Furthermore, there are also Gated Recurrent Units (GRU), which 
are newer, simplify the LSTM structure, and are usually more computationally efficient. How-
ever, both of these models require large datasets and long training times. 

Ensemble methods can combine several ML or DL methods or both. These ML and 
DL methods are used as basic methods that produce initial predictions. Then, the final pre-
dictions are determined using several techniques, such as voting, stacking, or boosting. The 
more basic methods used can provide richer insights, but the complexity becomes more com-
plex, and the computation becomes heavy. When using voting models, several models are 
applied independently, and more methods (can be more than three models) are generally used 
to produce maximum performance[20]–[23]. Voting tends to produce a more stable model 
that reduces the risk of overfitting through prediction aggregation. But it is sometimes less 
effective in dealing with the diversity and complexity of data because it only combines the 
final results of different models without considering the relationship between their predic-
tions. Stacking involves training a secondary model, namely a meta-learner, to combine pre-
dictions from several base models. This allows the meta-learner to learn from mistakes made 
by the base model more flexibly than voting[24]. Boosting works by training models sequen-
tially, where each new model tries to correct the errors made by the previous model[25]. This 
results in a series of models that focus on difficult cases that their predecessors failed to pre-
dict correctly, usually resulting in higher accuracy. One of the most famous boosting methods 
is eXtreme Gradient Boosting (XGB)[26]. 

Combining stacking and boosting can provide significant benefits because it combines 
the advantages of both techniques. Stacking allows us to combine models with different al-
gorithms, including those that may tend to overfit or have weaknesses in certain aspects of 
the data. Meta-learners can learn how to combine these predictions most profitably. Boosting 
can effectively improve weak predictions made by individual models in the stack by focusing 
learning on difficult examples. This can reduce overall bias and variance while improving 
model generalization. This research combines these two methods, using XGB as a meta-
learner from stacking. So, an ensemble model can be created that benefits not only from the 
collective wisdom of various learning algorithms but also from sequential learning that fo-
cuses on error reduction. This can produce very powerful models that take advantage of the 
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learning depth of the base model while gradually reducing errors through the boosting pro-
cess. 

In the context of medical data classification research, we often find relatively little and 
unbalanced data. This greatly affects the classification performance. This makes the process 
of balancing data with oversampling necessary. Because if undersampling is done, the data 
will become increasingly meaningless. Oversampling methods such as the synthetic minority 
over-sampling technique (SMOTE) are popularly used compared to random oversampling. 
Random oversampling methods generally do not provide significant or no effects[27]. One 
development of the SMOTE method is SMOTE-Tomek links[15]. This is a variant of 
SMOTE combined with the Tomek undersampling technique. In simple terms, SMOTE-
Tomek links work by using SMOTE to add minority samples and then using Tomek Links 
to delete samples from the majority class that are too close to the minority class, thereby 
reducing overlap between classes. In this way, the dataset's quality improves, and ultimately, 
the machine becomes more effective when learning. 

Based on the literature above, carrying out classification based on traditional ML meth-
ods is not possible to produce optimal results. The use of preprocessing methods such as 
balancing datasets using oversampling, feature selection, missing value imputation, or poly-
nomial regression has the potential to improve performance. Deep learning methods also 
perform better in this case. So, this research proposes to combine several deep learning meth-
ods and SMOTE-Tomek sampling techniques in a stacking-boosting ensemble method for 
robust diabetes data recognition. Further contributions of this paper are: 
1. Implementation of the SMOTE-Tomek sampling technique to improve distribution and 

quality. 
2. Combining three methods, namely: BiLSTM and BiGRU, which are deep learning meth-

ods, and the XGB ensemble boosting method as a basic learning method for diabetes 
classification. 

3. Combining three basic learning methods in a stacking-boosting ensemble, XGB is used, 
which is one of the boosting ensemble models used as a meta-learner in the stacking 
ensemble method. 

4. Test the method on popular diabetes datasets to prove the method's robustness. 
The next part of this paper will discuss preliminaries, which contain related works and 

important theories. Next, the proposed method, the results obtained from applying the 
method, and a discussion of the implications of these results in the broader context of diabe-
tes classification are presented in detail. The discussion will include an in-depth analysis of 
the influence of the SMOTE-Tomek technique in balancing datasets, the effectiveness of 
ensemble models directed by the XGBoost meta-learner, how this combination improves the 
model's predictive ability over previous approaches, and ends with a conclusion. 

2. Preliminaries 

2.1 Bidirectional Long Short-Term Memory (BiLSTM) 

 BiLSTM is a DL model based on a Recurrent Neural Network (RNN). RNN is a neural 
network that handles data sequences, such as text or time series. RNNs have the feature that 
the output of the previous step is provided as input to the next step, helping the network to 
retain memory of previously processed information. Traditional RNNs experience the prob-
lem of vanishing gradient, where the gradient used in the learning process can become very 
small, making learning very slow or even stopping. To overcome this problem, LSTM, a var-
iant of RNN, was developed. LSTM introduces the concept of gates, namely input gates (𝑖𝑡), 
forget gates (𝑓𝑡), and output gates (𝑜𝑡) which effectively allows the network to learn when to 

“remember” and when to “forget” information that is no longer relevant. Apart from that, a 
cell state update function (𝐶𝑡) was also added to help maintain relevant information over long 
data sequences without being affected by the vanishing gradient problem[28], [29]. Equation 
(1)-(4) shows the important formula for building the gates used. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

�̃�𝑡 = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 
(2) 



Journal of Future Artificial Intelligence and Technologies 2024 (June), vol. 1, no. 1, Setiadi, et al. 26 
 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (3) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 
(4) 

Where 𝑓𝑡 is the activation of the forget gate at time 𝑡,  𝜎 is the sigmoid function, 

𝑊𝑓 is the weight of the forget gate, ℎ𝑡−1 is the hidden state from the previous timestep, 𝑥𝑡 

is the input at timestep 𝑡, 𝑏𝑓 is biased for the forget gate, �̃�𝑡 is a candidate value for the 

memory cell, and ℎ𝑡 is the hidden state at time 𝑡. 
 BiLSTM is a further development of LSTM. BiLSTM processes data in two directions: 

forward and backward in separate layer formation. The first layer flows information from 
beginning to end, and the second layer flows information from end to beginning, so the net-
work has context from the past and future at each point. This can improve the model's ability 
to understand both past and future context in the data sequence[30], [31]. This is especially 
useful for tasks such as language processing, where the context of the words before and after 
is very important. BiLSTM offers increased accuracy in classification and other complex tasks 
as well as flexibility in combining information from both directions. In terms of tuning, some 
key hyperparameters include the number of hidden units, which determines the complexity 
the model can handle; learning rate, which must be adjusted carefully to avoid slow or fast 
convergence; the number of layers, which affects the depth of the learning representation; 
dropout rate, to prevent overfitting; batch size, which affects the stability of gradient estima-
tion and memory efficiency; and sequence length, which should be adjusted based on data 
context and task distribution. Proper setting of these hyperparameters is the key to optimizing 
BiLSTM performance. 

2.2 Bidirectional Gated Recurrent Units (BiGRU) 

 GRU is a variation of RNN designed to overcome the same problem as LSTM, namely 
vanishing gradient, but with a simpler structure. GRU combines the input gate and forget 
gate into a single update gate, thereby reducing the number of parameters to be trained and 
speeding up the training process without sacrificing too much memory capability. BiGRU is 
a GRU implementation that processes data in two directions, similar to BiLSTM. By utilizing 
two GRU layers with two-way information flow, BiGRU is able to better capture the before 
and after context in data sequences[19], [32], [33]. GRU works with two types of gates, namely 
Update Gate and Reset Gate, which are explained in Equation (5) and (6), and new Hidden 
state, which is explained in Equation (7).  

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡]) (5) 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡]) (6) 

ℎ̃𝑡 = tanh(𝑊 ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) 

ℎ𝑡 = 𝑧𝑡 ∗ ℎ𝑡−1 + (1 − 𝑧𝑡) ∗ ℎ̃𝑡 
(7) 

Where 𝑧𝑡 is the update gate vector at time 𝑡, 𝜎 is the sigmoid function, 𝑊𝑧 is the 

weight of the update gate, ℎ𝑡−1 is the hidden state from the previous timestep, 𝑥𝑡 is the 

input at timestep 𝑡, 𝑟𝑡 is the reset gate vector, 𝑊𝑟 is the weight matrix for the reset gate, 

ℎ̃𝑡 is the new hidden state candidate, 𝑊 is the weight matrix, ℎ𝑡 is the updated hidden 
state. 

 The main hyperparameters in BiGRU include the number of hidden units, learning rate, 
number of layers, dropout rate, batch size, and sequence length. Effective tuning of these 
parameters requires experimentation and adjustments based on validation results to achieve 
a balance between training speed, memory requirements, and accuracy. BiGRU offers high 
computational efficiency because it has a simpler structure than BiLSTM. This model effec-
tively understands bidirectional context, resulting in improvements in understanding depend-
encies in the data. 



Journal of Future Artificial Intelligence and Technologies 2024 (June), vol. 1, no. 1, Setiadi, et al. 27 
 

 

2.3 Boosting Ensemble 

 Boosting is an ensemble learning technique in machine learning that aims to create a 
robust model from a series of weaker models. This method works iteratively, where each 
newly added model attempts to correct the errors made by the previous model. Each model 
in this process focuses more on data samples that were difficult to predict by the previous 
model so that each subsequent model becomes more specific in overcoming the difficulties 
encountered[34], [35]. Boosting has a general working method as follows: 
1. Initialization: Each data sample is given the same weight or weight based on distribution. 
2. Iterative: trainer models are added one by one. 

a. The first model is trained on all the data. 
b. For each subsequent model, the data sample weights are adjusted so that the model 

focuses more on samples that the previous model had incorrectly predicted. 
c. This process is repeated until the maximum number of models is reached or addi-

tional models no longer improve accuracy. 
3. Aggregation: the output of all models is taken by a certain method to get the final pre-

diction. 
While intuitively focusing on the wrong samples sounds like it will increase overfitting, 

boosting often shows good resistance to overfitting, especially if the number of models used 
is controlled. Boosting tends to be more effective in reducing bias and variance than other 
ensemble methods, such as bagging. Some popular boosting algorithms include Adaptive 
Boosting (AdaBoost), Gradient Boosting Machines (GBM), Extreme Gradient Boosting 
(XGBoost/XGB), LightGBM, and CatBoost. Where AdaBoost is the earliest boosting 
model, GBM is a boosting model that applies gradients from the loss function to guide the 
learning process, lightGBM is a lighter and faster version of GBM, XGB is an optimized 
version of GBM, and CatBoost is a boosting method that is more focused on getting high 
accuracy in data that has the majority of categorical data. 

Regarding medical datasets with limited categoricality and require optimal performance, 
XGBoost was chosen in this research because it is a sophisticated implementation of current 
gradient-boosted trees. The main features of XGBoost include the addition of regularization 
to reduce overfitting, parallel processing that maximizes modern hardware, automatic han-
dling of missing values, tree pruning with a depth-first approach, and integration of cross-
validation which makes it easier to tune parameters efficiently[16], [36]. Important hyperpa-
rameters in XGBoost, such as max_depth, eta, subsample, and colsample_bytree, play an 
important role in optimizing the model. Tuning XGBoost involves adjusting these hyperpa-
rameters using techniques such as cross-validation and grid search to achieve a balance be-
tween training speed and accuracy. 

2.4 Stacking Ensemble 

 Stacking is an ensemble machine-learning technique that combines predictions from 
multiple models to produce more accurate predictions. This method involves two levels of 
models: a first-level model, usually referred to as a base learner, and a second-level model that 
aggregates their predictions or is known as a meta-learner[2], [24]. In general, stacking works 
with several stages as follows: 
1. Base Learners Training: different ML models are trained separately on the same dataset. 

These models can vary from linear regression, decision trees, SVM, neural networks, 
even DL models. 

2. Predictions from Base Learners: each base learner makes predictions, which the meta-
learner uses as input. These predictions can be class outputs or predicted probabilities. 

3. Meta-Learner Training: the meta-learner is trained on predictions from the base learner 
as features with the same output/target as the initial training data. The goal is to learn 
how to combine base learner predictions best to improve accuracy. 
The main advantages of stacking include diversifying the model through the use of mul-

tiple algorithms, which can reduce the risk of overfitting. In stacking, meta-learners such as 
linear regression or other ensemble models play an important role in integrating the output 
of the base learners, providing flexibility in combining predictions and increasing control over 
the integration process. The selection and complexity of meta-learners are critical, as they 
must be able to optimize and aggregate predictions effectively to minimize prediction error. 
The right meta-learner, especially one trained using out-of-fold predictions from the base 
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learner, can significantly improve model accuracy and robustness. Overall, the stacking tech-
nique harnesses the power of combining various models to produce very accurate and robust 
predictions. 

2.5 Related Works 

Various studies related to diabetes classification have been carried out, one of which is 
the research of Pradhan et al. [14], which tested several methods such as Naïve Bayes (NB), 
SVM, Random Forest, and Artificial Neural Networks (ANN) on the Pima Indian Diabetes 
(PID) dataset. The ANN model is structured with an input layer, several hidden layers, and 
an output layer, using Rectified Linear Unit (ReLU) and sigmoid activation functions to pro-
cess data more effectively. This configuration allows the model to learn complex patterns in 
the data without being affected as much by overfitting or noise. Numerically, the test results 
show that the ANN achieves superior performance metrics compared to other models. Its 
accuracy reached 85.09% in the diabetes prediction task, surpassing other techniques signifi-
cantly. Another study conducted by Wang et al. [13] introduced the DMP_MI algorithm. 
DMP_MI was designed to improve the accuracy of diabetes mellitus classification on the 
Pima Indians Diabetes (PID) dataset. The PID dataset has some problems with missing val-
ues and class imbalance. This algorithm uses the Naïve Bayes method to fill in missing values, 
the Adaptive Synthetic Sampling (ADASYN) method to balance classes in the dataset, and 
Random Forest as a classifier. Experimental results show that DMP_MI achieved an accuracy 
of 0.871, recall of 0.857, and precision of 0.806. This paper's conclusion confirms that com-
bining data infill techniques, adaptive synthetic sampling, and robust classifiers can signifi-
cantly overcome data quality problems and improve the effectiveness of medical diagnostic 
systems.  

 Özmen and Özcan's research [17] evaluated and compared four different approaches 
Classification and Regression Tree (CART), Artificial Neural Network (ANN), CART- Ge-
netic Algorithm (CART- GA), and ANN-GA using the PID dataset. GA is assigned to adjust 
parameters in CART and ANN. Experimental results show that the CART-GA approach 
provides the best performance. Specifically, in testing using 10-fold cross-validation, the ac-
curacy reached 93.42%, whereas without GA the accuracy was only 70.13%. In comparison, 
the traditional ANN model without GA optimization has lower accuracy, namely 59.74% in 
10-fold cross-validation, whereas when applying GA, the accuracy is 81.82%. CART-GA con-
sistently outperformed other approaches in all tested metrics—accuracy, precision, specificity, 
and F1 measure. This data shows that optimization using GA significantly increases the ef-
fectiveness of machine learning models in diagnosing Diabetes Mellitus. 

 Asniar et al.[15] proposed the Local Outlier Factor (LOF) method into SMOTE 
(SMOTE-LOF) for handling noise problems in imbalanced data. Keep in mind that most 
medical datasets are relatively unbalanced. The SMOTE-LOF method succeeded in increas-
ing the accuracy of the classification model on various datasets, including the PID dataset, 
Haberman's Survival Data, and the Glass Identification Database. Specifically, for the PID 
dataset, SMOTE-LOF shows significant numerical accuracy improvements over both C4.5, 
NB and SVM. C.45 produced the best results with accuracy increasing from 71.09 with noth-
ing to 73.03% with SMOTE to 75.13% and 75.10% for parameters k=3 and k=5 in SMOTE-
LOF. These results confirm that both SMOTE and SMOTE-LOF sampling methods can 
effectively minimize noise's influence and improve predictive performance. 

 Chang et al. [4] compared several ML methods, such as NB, RF, and J48 decision trees 
to classify diabetes mellitus. The dataset used is also a PID dataset. Based on the test results, 
NB has good performance with feature selection, while RF is more effective when using more 
features. Apart from that, the best results were obtained by RF with an accuracy of up to 
79.57%, a precision of 89.40%, and an AUC value of 86.24%. Similar research was conducted 
by Tasin et al. [16], here, the PID dataset is combined with several private datasets. Based on 
test results, using XGB and ADASYN, the accuracy reached 0.885, whereas, without 
ADASYN, the accuracy was only 0.78. This shows that the addition of synthetic data im-
proves classifier performance. 

Naz and Ahuja [37] used another approach in classifying diabetes on the same dataset, 
namely PID. A DL method with a multilayer perceptron artificial neural network and back-
propagation technique is proposed to improve prediction performance. DL was tested and 
compared with other methods, such as ANN, NB, and DT. As a result, DL shows superior 
performance with an accuracy of 98.07%, which is much higher than other methods, which 
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have an accuracy of between 76% and 96%. With these results, DL is proven to be the most 
effective and promising method for use in early diagnosis of diabetes. A DL method called 
twice growth deep neural network (2GDNN) was also proposed by Olisah et al.[1]. This was 
done due to the limitations of previously used prediction methods that could not achieve the 
expected accuracy and problems with the PID dataset, such as missing values and non-normal 
data distribution. As a solution, innovative data processing methods are proposed, including 
the use of Spearman correlation for feature selection and polynomial regression for imputa-
tion of missing values. The 2GDNN method was also compared with the SVM and RF meth-
ods, and as a result, 2GDNN showed significant performance improvements, with accuracy, 
sensitivity, and F1 score all above 97%. 

Previous research shows a variety of methods for diabetes classification, from traditional 
machine learning to deep learning and ensemble techniques. Although many achieve high 
accuracy, challenges remain in handling imbalanced datasets and data variations, especially in 
PIMA datasets. Therefore, this study proposes a combination of SMOTE-Tomek and stack-
ing-boosting ensemble techniques with XGBoost as a meta-learner to improve diabetes clas-
sification performance.  

3. Proposed Method 

Inspired by various research that has been discussed previously and the theories de-
scribed above. This research proposes a model that combines the BiLSTM, BiGRU, and XGB 
classifier methods as a base learner. The three base learners are combined using a stacking 
ensemble with an XGB regressor as a meta-learner. In addition, duplicate data, missing values, 
SMOTE-Tomek, and normalization were removed at the preprocessing stage. As an illustra-
tion, the proposed method is depicted in Figure 1. 

 

Figure 1. Proposed Method Illustration  

Based on Figure 1, the stages are explained in more detail as follows: 
1. Input data is read and stored in a data frame 
2. Preprocessing is carried out in the following stages: 

Training and Validation 

BiLSTM BiGRU XGBoost 

Stacking 

Ensemble 

XGBoost Meta-

learner 

Testing Data 

Evaluation 

Dataset Input 

Preprocessing 

 
Data Cleaning Separating features and labels 

SMOTE-Tomek 

Label Encoder 

Normalization Data Spliting 

Normalization 

Model 

Design: 

• BiGRU 

• BiLSTM 

• XGBoost 
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• Label encoder to convert non-numeric values into numeric values. For example, 
the feature 'Gender' with the values 'Male' and 'Female', will be converted to 0 and 
1, so that the machine learning model easily processes it. 

• Data cleaning is carried out by removing duplicates and missing values. Duplicate 
data was removed to avoid redundancy in the data. Meanwhile, deleting missing 
values on rows containing missing values is deleted to ensure data quality. 

• Dividing Features and Targets: Dividing features and targets is done after data 
cleaning. The data needs to be separated as to what will be the input for the model 
(X) from what we want the model to predict (y). 

• In the data-sharing process, the data is divided into training and testing sets with 
a ratio of 80:20. 

• Class balancing on the training set was performed with SMOTE-Tomek. SMOTE 
is used for oversampling minority classes, while Tomek-Links is used for under-
sampling the majority of classes, potentially creating overlapping classes. 

• The final step in preprocessing is data normalization. Normalization was per-
formed after SMOTE-Tomek because class balancing techniques may have 
changed the data distribution. Features are normalized with a standard scaler. Nor-
malization using StandardScaler refers to the standardization process, which gen-
erally involves changing data features so that the distribution has a mean value of 
0 and a standard deviation of 1. The mathematical formula for standardizing a 
feature is Equation (8). 

𝑧 =
(𝑥 − 𝜇)

𝜎
 (8) 

Where 𝑥 is the original value of the feature, 𝜇 is the mean of the feature, 𝜎 is 

the standard deviation of the feature, and 𝑧 is out standardization/normalization 
process. 

3. Design and compile the three models, i.e.: 
• The BiGRU model design used is presented in Table 1. 

Table 1. BiGRU Model Design. 

No Setting/Parameter Value Note 

1. RNN Layer Bidirectional (GRU (64)) The first layer will have a bidirectional 
RNN layer with 64 GRU units. 

  Bidirectional (GRU (32)) The bidirectional RNN layer with 32 
GRU units is used for the second layer. 

2. return_sequences True (for the first layer) Returns the entire output sequence for 
the first layer. 

3. input_shape (X_train_scaled.shape[1], 1) The model expects sequences with a 
length according to the number of fea-
tures in X_train_scaled and one feature 

per timestep. 

4. Dense layer y_train_resampled.max() + 1 This layer has the same number of units 
as the classes in the y_train_resampled / 

output layer. 

5. Activation (Dense 
Layer) 

softmax The activation function is used in the out-
put layer for multi-class classification. 

6. Optimizer adam Optimizer with a default learning rate 
value of 0.001. 

7. Loss Function categorical_crossentry Loss functions for multi-class classifica-
tion 

8. Metrics accuracy Metrics that the model will evaluate dur-
ing training and validation. 

 
• The BiLSTM model design used is presented in Table 2. 
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Table 2. BiLSTM Model Design. 

No Setting/Parameter Value Note 

1. RNN layer Bidirectional(LSTM(64)) Bidirectional RNN layer with 64 LSTM 
units for the first layer. 

  Bidirectional(LSTM (32)) The second layer will have a bidirectional 
RNN layer with 32 LSTM units. 

2. return_sequences True (for the first layer) Returns the entire output sequence for 
the first layer. 

3. input_shape (X_train_scaled.shape[1], 1) The model expects sequences with a 
length according to the number of fea-
tures in X_train_scaled and one feature 

per timestep. 

4. Dense Layer y_train_resampled.max() + 1 This layer has the same number of units 
as the classes in the y_train_resampled / 

output layer. 

5. Activation (Dense 
Layer) 

softmax The activation function is used in the out-
put layer for multi-class classification. 

6. Optimizer adam Learning rate 0.001, beta_1=0.9, 
beta_2=0.999, and epsilon=1e-07 

7. Loss Function categorical_crossentry Loss functions for multi-class classifica-
tion. 

8. Metrics accuracy Metrics that the model will evaluate dur-
ing training and validation. 

 
• The XGB model design used is presented in Table 3. 

Table 3. XGB Model Design. 

No Setting/Parameter Value Note 

1. n_estimators 150 The number of trees constructed. 

 learning_rate 0.01 Step size learning to update model 
weights. 

2. max_depth 6 Maximum depth of each tree. 

3. random_state 42 Seeds for reproduction 

4. eval_metric ["error", "logloss"] Metrics for evaluating model perfor-
mance during training 

5. eval_set (X_val, y_val) Dataset used for evaluation of model per-
formance during training. 

6. verbose True Determines whether evaluation metric 
output is printed during training. 

7. n_estimators 150 The number of trees constructed. 

 
4. Model Training: The model is trained using the fit method on training data that has been 

scaled and balanced. Cross-validation was also done with a 10% validation subset of the 
training data set. The result will be the predicted probability for each model, namely 
BiGRU, BiLSTM, and XGB. 

5. Ensemble predictions are carried out using the following steps: 
• Prediction Probability Extraction: Prediction probabilities from BiGRU, BiLSTM 

models, and positive class probabilities from XGBoost are extracted. 
• Meta-learner training is carried out based on feature stacks from previously made 

model predictions so as to produce continuous predictions from XGBRegressor. 
XGBRegressor parameters are presented in Table 4. 
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Table 4. XGBRegressor Model Design. 

No Setting/Parameter Value Note 

1. n_estimators 100 The number of trees constructed. 

 learning_rate 0.1 Step size learning to update model 
weights. 

2. max_depth 3 Maximum depth of each tree. 

3. objective reg:squarederror The objective function used for training. 

4. booster gbtree Gradient boosting based trees 

5. n_estimators 100 The number of trees constructed. 

 
• The results of the final predictions are rounded to the nearest integer, which may 

indicate the prediction class in the case of classification. Then, the output is con-
verted into classification results. 

6. After training the ensemble model, the testing data is tested with the model, and then 
the accuracy, precision, recall, f1, and specificity are calculated. 

4. Results and Discussion 

In this section, the proposed method is tested with two diabetes datasets, namely ISD 
[7] and PID [9], [10]. These two datasets were chosen because they are the two most popular 
datasets; however, as previously discussed, this research focuses more on the PID dataset 
because it is relatively more challenging than PID. More detailed features of the PID and ISD 
datasets are presented, respectively, in Tables 5 and 6. 

Table 5. PID Dataset Details 

No Features Note 

1. Pregnancies Number of pregnancies 

2. Glucose 2-hour plasma glucose concentration in the oral glucose tolerance test 

3. BloodPressure Diastolic blood pressure (mm Hg) 

4. SkinThickness Triceps skinfold thickness (mm) 

5. Insulin 2-hour serum insulin (mu U/ml) 

6. BMI Body mass index (weight in kg/(height in m)2) 

7. DiabetesPedigree-
Function 

Function of diabetes pedigree 

8. Age Age (years) 

9. Outcome Classification results (0 or 1, where 1 indicates diabetes and 0 does not) 

Table 6. ISD Dataset Details 

No Features Note 

1. ID Unique identification for each record. 

2. No_Patien The patient number may be another form of identification. 

3. Gender Patient gender (F for female, M for male). 

4. Age Patient age. 

5. Urea Urea level in the blood. 

6. Cr (Creatinine) Creatinine level in the blood. 

7. HbA1c Hemoglobin A1c (long-term blood sugar control indicator). 

8. Chol (Cholesterol) Total cholesterol level. 

9. TG (Triglycerides) Triglyceride level. 

10. HDL(High-Density Lipoprotein) Good cholesterol. 

11. LDL (Low-Density Lipoprotein) Bad cholesterol. 

12. VLDL (Very LDL) Bad cholesterol. 

13. BMI (Body Mass Index) Body mass index. 

14. Class 'N' for normal, 'Y' for diabetes, 'P' for pre-diabetes 
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The PID and ISD datasets have a different focus and data composition, influencing their 
approach to research and development of predictive models for type 2 diabetes. The PID 
dataset is focused on Pima women over 21 years of age, primarily due to the high prevalence 
of type 2 diabetes in this group and its association with risk factors such as gestational diabe-
tes[38]. The data included are the number of pregnancies, plasma glucose, blood pressure, 
and other variables useful in identifying the risk of type 2 diabetes. PID can be more difficult 
to predict with its homogeneity and limited variables, even though this dataset is clean with 
no missing values or data. Duplicates, with a distribution of 500 records for no diabetes and 
268 for diabetes[39]. 

In contrast, the ISD dataset captures a more diverse population from Iraq, with broader 
data, including lipid profiles and HbA1c. This diversity allows the creation of more robust 
predictive models, but like PID, ISD also has no missing values or duplicates, showing good 
data cleanliness. The class distribution on the ISD was 103 entries for class 'N', 844 for 'Y', 
and 53 for 'P', indicating an unequal distribution similar to PID. To overcome this imbalance, 
both datasets apply the SMOTE-Tomek technique to 80% of the training dataset to improve 
the quality of machine learning. The results of this resampling, which aims to provide a more 
balanced class distribution, are presented in Figure 2. 

 
(a) 

 
(b) 

Figure 1. Before after SMOTE-Tomek (a)PID Dataset; (b) ISD Dataset.  

 

Figure 2. BiGRU Model Prediction for PID Dataset 
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Figure 3. BiLSTM Model Prediction for PID Dataset 

 

Figure 4. BiGRU Model Prediction for ISD Dataset 

 

Figure 5. BiLSTM Model Prediction for ISD Dataset 

After carrying out resampling, normalization was carried out using a standard scaler. 
Then the training and validation process was carried out on the three base learners, namely 
BiGRU, BiLSTM, and XGB. Accuracy and loss plots for each model are presented in Figure 
3 for BiGRU on the PID dataset and Figure 5 for the ISD dataset. Meanwhile, the BiLSTM 
method plots in Figure 4 for the PID dataset and Figure 6 for the ISD dataset. In more detail, 
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the results of all base learners are presented in Table 5. This table shows that the performance 
of XGB is the best on both datasets, followed by BiGRU and BiLSTM. The performance of 
BiGRU and BiLSTM may not be special. This is because the design of BiLSTM and BiGRUM 
is relatively simple, with only three layers. The purpose of this layer's simplicity is to reduce 
computational complexity, considering that the proposed method uses three base learners, 
two of whom are deep learning methods. Because the stacking ensemble can combine the 
performance of all three base predictors, we reduce the complexity of the BiGRU and 
BiLSTM models. So even though the prediction results of each model, especially BiGRU and 
BiLSTM, appear relatively weak (see Table 5), after being combined with an ensemble, the 
method can recognize the diabetes dataset powerfully and accurately (see Figures 7 and 8). 

Table 5. Base Learner Results Details 

Dataset Method Acc_train Acc_val Loss_train Loss_val 

PID BiGRU 0.8515 0.8421 0.3543 0.3319 

 BiLSTM 0.7735 0.7500 0.4508 0.5120 

 XGB 0.9623 - - - 

ISD BiGRU 0.9995 0.9650 0.0022 0.1723 

 BiLSTM 0.9926 0.9500 0.0192 0.2835 

 XBG 0.9912 - - - 

 

Figure 6. Final prediction for PID dataset using the proposed method 

 

Figure 7. Final prediction for ISD dataset using the proposed method 
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From the results presented in Table 5, it appears that XGB performs better than BiGRU 
and BiLSTM on both datasets. BiGRU and BiLSTM show lower performance, possibly be-
cause these deep learning models require large datasets to perform optimally. In this context, 
simpler designs aim to reduce computational overhead, considering the use of multiple base 
learners in one ensemble. However, the results of the three base learners above can still be 
maximized with a stacking-boosting ensemble, where it appears that all testing results on the 
two datasets produce an accuracy of 1.0, and this means that the same values are obtained for 
precision, recall, specificity, and f1. This is because using XGB as a meta-learner in the stack-
ing ensemble allows more effective integration of predictions from the base learner. XGB 
performs regularization and handles overfitting efficiently, ensuring the resulting predictions 
are accurate and generalizable. The proposed method can also reduce bias and variance, pro-
ducing a more stable and robust model for new data and hidden variables in the training 
dataset.   

5. Comparison 

In this section, we explore the high performance of our proposed method across two 
different datasets, demonstrating its robustness and precision. We also compared several pre-
vious methods that used the same dataset, as shown in Table 6. 

Table 6. Comparison testing results with prior art 

Dataset Method Accuracy Recall Precision F1 Specificity 

PID Ref [2] 0.7710 0.70 0.68 0.69 - 

 Ref [12]  0.78 0.85 0.81 0.83 - 

 Ref [4] 0.7957 0.8133 0.8940 0.8517 0.7500 

 Ref [13] 0.871 0.857 0.806 0.830 - 

 Ref [17] 0.9342 0.9767 0.9545 0.9655 0.9394 

 Ref [23] 0.935 0.85 - - 0.98 

 Ref [1](2GDNN + O2GDNN) 0.97248 0.97245 0.97342 0.97255 - 

 Ref [1] (RF + ORF) 0.97931 0.97931 0.98119 0.97954 - 

 Ref [37] 0.9807 0.9846 0.9522 0.9681 - 

 Ours Method 1.0000 1.0000 1.0000 1.0000 1.0000 

ISD Ref [1](2GDNN + O2GDNN) 0.97333 0.97333 0.97281 0.97265 - 

 Ref [12] 0.99 1.00 0.94 0.97 - 

 Ref [1] (RF + ORF) 1.0000 1.0000 1.0000 1.0000 - 

 Ours Method 1.0000 1.0000 1.0000 1.0000 1.0000 

 
The ISD dataset has proven easier to recognize, as evidenced by the performance of the 

base learner in refs [1] and [12]. Although research [1] also succeeded in getting perfect per-
formance on the ISD dataset, on the PID dataset, the accuracy, recall, and f1 were around 
0.97, and the precision was around 0.98. However, if we focus on recall performance and 
accuracy, the method [37] is superior to reference [1]. In medical practice, the choice of model 
evaluation metrics is strongly influenced by the consequences of diagnostic errors. Recall 
(sensitivity) and specificity are two very critical metrics because they are directly related to 
patient clinical outcomes. High recall is essential in a medical context because it ensures that 
the model identifies almost all positive cases, such as serious illnesses. Failure to detect posi-
tive cases may result in not implementing necessary treatment, worsening the patient's condi-
tion and increasing the risk of serious complications. Therefore, high recall helps start treat-
ment as quickly as possible, vital for diseases with serious health implications, such as cancer 
or heart disease. On the other hand, high specificity reduces the possibility of wrong diagnosis 
in healthy individuals. Low specificity leads to many “false positives,” in which individuals 
who do not have the disease are considered patients, resulting in unnecessary anxiety, further 
medical testing, and potentially risky interventions. High specificity is important to avoid these 
costs and risks, ensuring that only those who genuinely need treatment receive further inter-
vention[27], [40].  

Finding a balance between recall and specificity is important because placing too much 
emphasis on one can come at the expense of the other. For example, increasing recall may 
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decrease specificity, which may be undesirable in certain medical conditions. Therefore, these 
two metrics are often weighed in medical settings based on clinical priorities and the conse-
quences of diagnostic errors. Additionally, accuracy can provide a general idea of model reli-
ability but may be less informative in imbalanced datasets, where most classes can distort the 
perception of model performance. Precision and F1 scores are also important, as precision 
indicates the accuracy of positive predictions, and the F1 score balances precision and recall. 
In practice, F1 scores are often used to assess model performance on imbalanced datasets, 
providing a more holistic insight into a model's effectiveness in identifying positive cases 
without overpredicting false positives. 

6. Conclusions 

This research succeeded in developing a robust method for diabetes classification by 
combining techniques from deep learning and ensemble learning, especially using the 
SMOTE-Tomek method for data balancing and XGBoost as a meta-learner in the stacking 
framework. Using BiLSTM, BiGRU, and XGBoost as base learners shows that integrating 
these approaches can increase accuracy, precision, recall, and model specificity. The final re-
sults confirm that ensemble techniques with a rigorous meta-learner can minimize the indi-
vidual weaknesses of each model and improve generalization on complex and imbalanced 
medical data. This indicates the importance of a hybrid approach in developing medical diag-
nostic tools, especially in the face of the wide and inconsistent data variance often found in 
health datasets. 
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