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Abstract: In the clinical treatment of skin diseases and cancer, cryotherapy and immunotherapy offer 

effective and minimally invasive alternatives. However, the complexity of patient response demands 

more sophisticated analytical strategies for accurate outcome prediction. This research focuses on an-

alyzing the effect of preprocessing in various machine learning models on the prediction performance 

of cryotherapy and immunotherapy. The preprocessing techniques analyzed include advanced feature 

engineering, Synthetic Minority Over-sampling Technique (SMOTE), and Tomek links as resampling 

techniques and their combination. Various classifiers, including support vector machine (SVM), Naive 

Bayes (NB), Decision Tree (DT), Random Forest (RF), XGBoost, and Bidirectional Gated Recurrent 

Unit (BiGRU), were tested. The findings of this study show that preprocessing methods can signifi-

cantly improve model performance, especially in the XGBoost model. Random Forest also gets the 

same results as XGBoost, but it can work better without significant preprocessing. The best results 

were 0.8889, 0.8889, 0.6000, 0.9037, and 0.8790, respectively, for accuracy, recall, specificity, precision, 

and f1 on the Immunotherapy dataset, while on the Cryotherapy dataset, respectively, they were 0.8889, 

0.8889, 0.6000, 0.9037, and 0.8790. This study confirms the potential of customized preprocessing and 

machine learning models to provide deep insights into treatment dynamics, ultimately improving the 

quality of diagnosis. 
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1. Introduction 

In recent years, machine learning (ML) has revolutionized various fields, including 
healthcare, by providing powerful data analysis and prediction tools. Its ability to process and 
learn from large amounts of data has made ML an invaluable asset in clinical data analysis 
and prediction, thereby improving the accuracy of diagnostic and treatment results. To in-
crease the effectiveness of clinical treatment, especially in the context of treating cancer and 
skin diseases, immunotherapy and cryotherapy have emerged as promising methods because 
their effectiveness can be tailored to the needs of each patient.  

Immunotherapy, which harnesses the patient's immune system to fight disease, and cry-
otherapy, which relies on applying extremely low temperatures to destroy abnormal tissue, 
offer less invasive approaches than conventional methods such as chemotherapy and radio-
therapy[1]–[4]. However, the complexity of patient response to these two therapies indicates 
the need for a more granular approach to predicting treatment outcomes, considering indi-
vidual characteristics and associated clinical variables. In this context, ML offers significant 
potential to improve the classification or prediction of treatment success, facilitating more 
accurate personalization of treatment[5]. This classification can not only improve our under-
standing of treatment dynamics but also optimize clinical decision-making and treatment 
strategies, ultimately improving patient health outcomes. 
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 Each ML method for this task has its strengths and. The Support Vector Machine 
(SVM) is known for its effectiveness in handling high dimensional data and generating highly 
accurate models. However, it is often less efficient on huge datasets and requires careful pa-
rameter tuning[6]. On the other hand, Naive Bayes (NB) is valued for its simplicity and rapid 
implementation[7], but its assumption of feature independence may not hold in complex clin-
ical scenarios, potentially compromising prediction accuracy. Decision trees (DT) allow easy 
interpretation and are capable of handling non-linear data, but they are susceptible to overfit-
ting, especially in very deep trees. To overcome this weakness, Random Forest (RF) aggre-
gates many decision trees to improve stability and accuracy[8], [9], but in turn, these models 
can become very complex and require more computing resources. XGBoost further refines 
the ensemble learning approach with more efficient optimization and better overfitting man-
agement[10], but still requires careful parameter tuning to achieve optimal performance. 

Deep learning methods based on a recurrent neural network (RNN), such as the bidi-
rectional gated recurrent unit (BiGRU), can also be used in this case. BiGRU stands out for 
its ability to manage long-term dependencies in data[11], [12]. BiGRU is more efficient than 
other recurrence models, such as long-sort-term memory (LSTM), because it requires less 
computation but still requires a large dataset for training to produce a robust model. Thus, 
selecting an appropriate ML algorithm should be based on specific data characteristics, de-
sired model complexity, and available computational resources to produce accurate and effi-
cient predictions in the context of clinical settings. 

The characteristics of medical datasets often reflect unique challenges in developing clas-
sification models. Medical datasets typically feature a limited number of samples and exhibit 
imbalance[13]. Additionally, certain datasets may be constrained by a limited number of fea-
tures, which can introduce challenges such as outliers or extreme values diverging from typical 
patterns. These anomalies can hinder the effective training of models[14]. The Cryotherapy 
and Immunotherapy dataset[15]–[18] is no exception. Dataset preprocessing is crucial to de-
termining model performance. Feature engineering is a method for creating new features 
from existing features. This helps reveal important aspects of the data that may not be imme-
diately obvious but are highly relevant for predictions[19], [20].  

Resampling techniques such as SMOTE-Tomek can be used to overcome the imbalance 
problem in the dataset. The Synthetic Minority Over-sampling Technique (SMOTE) func-
tions by creating synthetic samples from minority classes to balance the class distribution[21]–
[23]. Meanwhile, Tomek links identify and delete pairs of samples from different classes close 
to each other. Combining SMOTE and Tomek links creates an oversampling and under-
sampling process to form a balanced dataset that does not overlap between classes. Based on 
the literature above, the objectives of this research are: 
1. Analyze various machine learning and BiGRU methods to classify Cryotherapy and Im-

munotherapy Datasets.  
2. Analyze how various preprocessing techniques, such as feature engineering and 

SMOTE-Tomek, can affect the performance of different classification methods in small 
and imbalanced medical datasets.  

3. Determine the most effective combination of preprocessing strategies and machine 
learning models to increase the accuracy and robustness of predictions and provide more 
accurate and useful insights in clinical decision-making.  
Furthermore, this research aspires to guide the development of more adaptive clinical 

systems that are responsive to individual treatment needs. The remainder of this paper will 
delve deeper into the details of proposed method and the outcomes obtained, as well as a 
discussion of the implications of the research findings for current clinical practice. 

2. Related Works 

Recent advancements in machine learning have shown promising results in medical da-
tasets classification, particularly with Cryotherapy and Immunotherapy datasets. One notable 
study [3],uses the J48 decision tree by introducing attributes constructed through genetic pro-
gramming to classify immunotherapy and cryotherapy datasets. The construction of new at-
tributes through genetic programming to expand the information space shows a significant 
improvement in J48 classification accuracy, from about 14% for the immunotherapy dataset 
to 5% for the cryotherapy dataset. The conclusions of this study underscore the importance 
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of new attributes in improving classification accuracy while recommending further use of this 
method to improve the efficiency of classification models in medical applications. 

Furthermore, a comprehensive analysis conducted by another research [2] evaluated var-
ious machine learning methods,  such as NB, RF, SVM, K-Nearest Neighbors (KNN), and 
Artificial Neural Network (ANN) on cryotherapy and immunotherapy datasets. This research 
also tested and analyzed several optimization techniques, such as Principal Component Anal-
ysis (PCA), Linear Discriminant Analysis (LDA), and oversampling. Random Forest showed 
the best performance with an accuracy of 0.95, a sensitivity of 0.88, and a specificity of 0.98 
on the cryotherapy dataset. Meanwhile, the immunotherapy dataset resulted in accuracy, sen-
sitivity, and specificity of 0.86, 0.87, and 0.84, respectively. 

Research [24] compares KNN, NB, and DT methods for classifying immunotherapy 
datasets. The KNN method is implemented by calculating the Euclidean distance between 
data points, NB based on conditional probability, and DT using entropy and gain measure-
ments to build a decision tree. The results of this study show that NB provides the highest 
classification accuracy, namely 0.81, followed by DT 0.8, and KNN 0.74. 

Research [4] discusses an optimized machine learning approach by adding synthetic data 
for various health datasets such as cancer, heart disease, diabetes, cryotherapy, and immuno-
therapy. Synthetic data is generated using the Generative Adversarial Network (GAN) 
method and RF as a classifier. The results show that the improved data enables the use of 
visual learning as a new approach in data analysis, offering a beneficial synergy between good 
quality data and optimal classification performance. Focusing more on observing immuno-
therapy and cryotherapy datasets, the use of synthetic data can increase classifier performance 
by around 5% to 16% for accuracy, recall, precision, specificity, and f1.  

Despite these advancements, the literature reveals a gap in systematically exploring the 
combined impact of preprocessing techniques, such as advanced feature engineering and 
resampling methods like SMOTE-Tomek, on classification outcomes. This research aims to 
bridge that gap, providing a nuanced understanding of preprocessing's role in enhancing clas-
sifier performance in the context of small and imbalanced medical datasets. 3. Proposed 
Method 

3. Proposed Method 

This study proposes a comprehensive methodology designed to investigate the impact 
of various preprocessing techniques on the performance of machine learning classifiers in the 
context of Cryotherapy and Immunotherapy datasets. Given the challenges associated with 
small and imbalanced medical datasets, such as limited samples and the presence of outliers, 
our approach emphasizes advanced feature engineering, the SMOTE, and Tomek links for 
data preprocessing. The ultimate goal is to identify the most effective combination of prepro-
cessing strategies and machine learning models to enhance prediction accuracy and robust-
ness, thereby offering more precise insights for clinical decision-making. Transitioning from 
the theoretical underpinnings to practical application, this research proposes to perform per-
formance analysis of methods such as XGBoost, SVM, NB, DT, RF, and BiGRU to classify 
Cryotherapy and Immunotherapy datasets. This shift from a broad methodological frame-
work to the specific analysis of machine learning models underscores our commitment to not 
only addressing the inherent challenges of medical dataset analysis but also to exploring the 
potential of these models to yield actionable insights. Figure 1 illustrates the stages of the 
proposed method, visually guiding the reader through the sequential steps of our research 
process, from data preprocessing to model evaluation. 

3.1. Dataset Collection 

This study utilizes cryotherapy [18]and immunotherapy [17] datasets, both of which are 
prominent in the context of wart treatment. Each dataset classifies treatment outcomes into 
two categories: failed or successful. Additionally, both datasets share six common features, 
with the immunotherapy dataset containing one unique feature. Each dataset comprises 90 
records. A detailed description of the features shared by and unique to each dataset is pro-
vided in Table 1. 
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Figure 1. Step-by-step proposed method illustration. 

Table 1. Details of Datasets Features. 

Feature Name Cryotherapy Immunotherapy Description 

Sex ☑ ☑ Gender of the patient (1 = Male, 2 = Fe-
male) 

Age ☑ ☑ Age of the patient in years 

Time  ☑ ☑ Duration of treatment in months 

Number_of_Warts ☑ ☑ Total number of warts present 

Type ☑ ☑ Type of wart (numerical category) 

Area ☑ ☑ Area of warts in mm² 

Induration_diameter Χ ☑ 
The diameter of the induration around 

the wart in mm 

Result_of_Treatment ☑ ☑ 
Outcome of the treatment (1 = Success-

ful, 0 = Unsuccessful) 

 
Table 1 elaborates on the characteristics of each dataset, including patient gender, age, 

treatment duration, total number of warts, wart type, affected area, and, exclusively for the 
immunotherapy dataset, the diameter of the induration surrounding the wart. The outcome 
of the treatment, indicating success or failure, is also documented for both datasets. 

3.2. Delete Missing Value and Duplicate Records 

In data mining, especially for classification tasks, it is essential to ensure data cleanliness 
by removing missing values and duplicate records. In preparing the cryotherapy and immu-
notherapy datasets for analysis, we meticulously addressed missing values and duplicate rec-
ords to ensure the integrity and reliability of our findings. Our approach was guided by the 
principle of minimizing data loss while preserving the quality of the dataset. Missing values 
can reduce the accuracy and effectiveness of classification models by causing errors in calcu-
lations and analysis. Removing or imputing these values helps improve the reliability of pre-
dictions[13], [25]. Meanwhile, duplicate records can cause bias in the data and inefficient pro-
cessing. Eliminating duplicates ensures that each data is considered unique, reduces redun-
dancy, and increases data processing speed[26], [27]. These steps are essential to achieve ac-
curate and representative classification results from the dataset. 

3.3. Feature Engineering 

In addressing the unique challenges the Cryotherapy and Immunotherapy datasets pre-
sented, including their small size and imbalance, feature engineering emerged as a pivotal 
preprocessing step. This process involved creating new features from the existing data to 
uncover patterns not immediately apparent yet crucial for enhancing our classification mod-
els' predictive accuracy and robustness.  
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This process is instrumental in allowing models to assimilate more complex and relevant 
information from the dataset, significantly improving prediction accuracy[28]. Several engi-
neering feature techniques include logarithmic transformation, interaction, and derivative/ra-
tio. Logarithmic transformation can reduce the effects of outliers and bring the data distribu-
tion closer to a normal distribution, making it easier for some algorithms to model data more 
efficiently. Interaction features combine two or more variables to form a new feature that 
reflects their combined effect. This is especially important in cases where the effect of one 
variable on the target variable may depend on the value of another variable. Meanwhile, de-
rivative features or ratios involve creating new features through arithmetic operations such as 
dividing or subtracting two variables, providing insight into relative proportions or differ-
ences. 

3.4. Data Splitting, SMOTE-Tomeks, and Normalization 

This section delves into the strategic implementation of data splitting, the SMOTE-
Tomek resampling approach, and data normalization as foundational preprocessing steps to 
optimize model performance.  

Data splitting is a critical initial step, partitioning the dataset into training (80%) and 
testing (20%) subsets. This segregation is essential for evaluating the model's performance on 
unseen data. Subsequently, the training data undergoes preprocessing using the SMOTE-
Tomek technique to address class imbalance—a common challenge in medical datasets. 

SMOTE is designed to mitigate imbalance by generating synthetic instances of the mi-
nority class, rather than merely duplicating existing ones. This method involves selecting two 
or more similar instances within the minority class and calculating synthetic points between 
them to create new samples. [29]. The process can be summarized as follows[21]: 
1. Identify the k nearest neighbors for each minority class sample, typically using Euclidean 

distance. 
2. Randomly select one of these neighbors and create a new sample along the vector that 

connects the original sample to this neighbor. 
3. Generate the new sample by interpolating between the original sample's features and its 

neighbor's features, scaled by a random factor between 0 and 1. 
 
This approach not only augments the minority class but also ensures a richer, more di-

verse dataset for training the model. Let's say 𝑥 is a minority sample and 𝑥𝑛𝑛 is one of its 
nearest neighbors, the synthetic sample (𝑥𝑛𝑒𝑤) can be calculated by Equation (1), where 𝜆 is 
a random number between 0 and 1. 

𝑥𝑛𝑒𝑤  =  𝑥 + 𝜆 ⋅ (𝑥𝑛𝑛 − 𝑥) (1) 

Meanwhile, Tomek links is an undersampling technique which enhance data quality by 
eliminating overlaps between classes [30]. So, if two samples are closest neighbors and come 
from different classes, then the two samples form a Tomek link. If samples 𝑥𝑖 from class 𝐶𝑖 

and 𝑥𝑗 from class 𝐶𝑗 are the only nearest neighbors of each other, they form a Tomek link. 
In other words, pairs of samples from different classes are identified as the closest neighbors 
to be deleted. 

In machine learning practice, it is important not to apply SMOTE-Tomek to testing data 
to preserve the purity and original distribution of the dataset, thereby allowing objective eval-
uation of model performance on previously unseen data. SMOTE-Tomek is only applied to 
training data to overcome class imbalances and clarify boundaries between classes. Further-
more, the use of the Standard Scaler for normalization of both training and testing data helps 
reduce bias in models sensitive to feature scales, such as SVM and KNN. It speeds up the 
convergence process in algorithms that use gradient descent. Standard Scaler converts fea-
tures into a distribution with a mean of zero and a standard deviation of one, ensuring that 
all features contribute equally to the model's predictions. The standard scaler transformation 
can be calculated with Equation (2). 

𝑧 =
(𝑥 − 𝜇)

𝜎
 (2) 

Where 𝑥 is the original value of the feature, 𝜇 and 𝜎 are the mean and standard devi-
ation of the feature, respectively. 
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3.5. Training and Testing Evaluation 

After preprocessing and balancing the training data, several classification models such as 
SVM, Naive Bayes, Random Forest, Decision Tree, and XGBoost were tested in this research. 
The training process entails adjusting the model's internal parameters based on given data and 
targets, looking for patterns or relationships that can accurately predict outcomes. Addition-
ally, the BiGRU DL model was utilized, necessitating converting the training data into a suit-
able format, specifically 3D data, to accommodate the GRU's input structure requirements. 
This model was then trained with specified parameters, such as the number of epochs and 
optimizer, to minimize the loss function and enhance accuracy. 

Upon completion of the training phase, the subsequent step involves testing the model 
with data it has not previously encountered, to assess its predictive capabilities on unseen 
data.  This evaluation employs several metrics: a confusion matrix, accuracy, precision, recall, 
specificity, and F1 score metrics[31]–[35] Where each of these metrics provides different in-
sights into aspects of model performance, namely:  
• Confusion Matrix provides a visual representation of classification performance. 
• Accuracy measures the total proportion of correct predictions. 
• Precision is the ratio of true positive predictions to all positive predictions. 
• Recall (or sensitivity) measures the model's ability to find all actual positive cases. 
• Specificity measures the ability of the model to determine true negatives from tested 

negatives. 
• The F1 Score is the harmonic average of precision and recall, balancing the two. 

In the context of medical datasets, which are often characterized by their small size and 
imbalance, it is important to select the most appropriate measurement tools to depict model 
performance accurately. Relying solely on accuracy as a metric may not always yield the most 
precise representation, particularly in the case of imbalanced datasets. This is due to the po-
tential bias towards predicting the majority class more frequently, thereby neglecting the mi-
nority classes that hold significant importance[6]. Recall, or sensitivity, is crucial as it quantifies 
the model's proficiency in identifying all true positive instances. High recall indicates that the 
model successfully detects nearly all positive cancer cases, substantially reducing the risk of 
failing to provide necessary treatment to diagnosed individuals. On the other hand, specificity 
measures the model's ability to truly identify negatives, which is important to avoid false di-
agnoses that can cause anxiety or unnecessary treatment in healthy patients. High specificity 
ensures that individuals who do not have the tested condition are completely excluded[36]. 
These two metrics are of utmost importance in helping to balance identifying as many cases 
as possible and avoiding false alarms, which is especially important in the clinical setting. 

4. Results and Discussion 

This section discusses results and processes, starting with initial data processing, includ-
ing removing missing values, duplicate records, and data normalization. The process of re-
moving missing values and duplicate records must be carried out to minimize noise. Even 
though both datasets did not have missing values, duplicate data was found in the cryotherapy 
dataset. So, the number of records for each dataset is 89 and 90. Next, feature engineering is 
carried out to obtain four new features, namely log_Area, age_time_interaction, Intensity, and 
Time_per_wart. In more detail, the engineering features carried out are as follows: 

1. Logarithmic transformation of the Area feature: the natural logarithm of (1 +  𝑥) is 

carried out for each element 𝑥 in the Area to form the log_Area feature. This transfor-
mation aims to reduce the influence of extreme values or outliers in the 'Area' feature. 
Equation (3) 

log_Area = log (1 + Area)  (3) 

2. Create an interaction feature between Age and Time: This feature is the product of two 
variables, 'Age' and 'Time', and is used to capture the interaction between these two 
variables. To generate the age_time_interaction feature, Equation (4) is used. 

age_time_interaction = Age × Time  (4) 

3. The third feature is Intensity which is obtained with Equation (5). This feature attempts 
to assess the density of warts per unit area. This can be very informative, especially in a 



Journal of Future Artificial Intelligence and Technologies 2024 (June), vol. 1, no. 1, Setiadi, et al. 45 
 

 

medical context, as the density of warts can relate to the severity or type of treatment 
required. This feature shows how many warts there are relative to the affected area.  

Time_per_Wart =
Time

Number_of_Warts
  (5) 

4. Lastly is the Time_per_Wart feature, which can be calculated from Equation (6). This 
feature measures the average treatment time required per wart. This can provide a per-
spective on treatment efficiency, namely whether the overall treatment time is adequate 
for the number of warts to be treated. 

Time_per_Wart =
Time

Number_of_Warts
  (6) 

The four aforementioned features are combined into the dataset, which is subsequently 
partitioned into 80% for training and 20% for testing, resulting in 71 training records for the 
cryotherapy dataset and 72 for the immunotherapy dataset. The SMOTE-Tomek technique 
is applied to the training data, as illustrated in Figures 2 and 3. 

Next, the training and testing process for the above data was carried out for several ML 
and BiGRU models, where the configuration of each model used in this research is presented 
in Table 2 for the ML model and Table 3 for BiGRU. Next, evaluation of the testing data is 
carried out using various measuring tools that have been described previously. The measure-
ment results of each method are presented in Tables 4 to 11. 

 

Figure 2. Before and after SMOTE-Tomeks on Cryotherapy dataset. 

 

Figure 3. Before and after SMOTE-Tomeks on Immunotherapy dataset. 
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Table 2. ML Models Configuration. 

Method Configuration 

XGBoost 
The selected random seed was set to 42 to ensure consistency of re-

sults. 

SVM Kernel = RBF and random seed = 42. 

Naïve Bayes 
Using Gaussian Naive Bayes, features are fitted, assuming a normal 

distribution. 

Random Forest Using random seed = 42, n_estimators=100 

Decision Tree Using random seed = 42 

Table 3. BiGRU Model Configuration 

Component Configuration 

Input Layer 
Bidirectional Layer that packs GRU with 32 units. 3D input data is 

required. 

Hidden Layer 
Second Bidirectional Layer with 16 GRU units. Returns no sequences 

(return_sequences=False). 

Output Layer 
Dense layer using softmax activation function for binary classifica-

tion. 

Compiler 
The model is compiled with the optimizer 'adam' and the loss func-

tion 'categorical_crossentropy'. 

Training Model dilatih dengan 50 epochs 

Table 4. Performance Evaluation after Feature Engineering and SMOTE-Tomek in Immunotherapy 
Dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.8889 0.8889 0.6000 0.9037 0.8790 

SVM 0.7778 0.7778 0.4000 0.7630 0.7579 

Naïve Bayes 0.7222 0.7222 0.6000 0.7407 0.7293 

Random Forest 0.8889 0.8889 0.6000 0.9037 0.8790 

Decision Tree 0.7778 0.7778 0.6000 0.7778 0.7778 

BiGRU 0.7222 0.7222 0.4000 0.7063 0.7119 

Table 5. Performance Evaluation after Feature Engineering is only in the Immunotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.7778 0.7778 0.2000 0.8301 0.7185 

SVM 0.7778 0.7778 0.2000 0.8301 0.7185 

Naïve Bayes 0.6667 0.6667 0.4000 0.6667 0.6667 

Random Forest 0.8333 0.8333 0.4000 0.8646 0.8062 

Decision Tree 0.7222 0.7222 0.4000 0.7063 0.7119 

BiGRU 0.7222 0.7222 0.2000 0.6806 0.6771 

Table 6. Performance Evaluation after SMOTE-Tomek is only in the Immunotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.7778 0.7778 0.2000 0.8301 0.7185 

SVM 0.8333 0.8646 0.4000 0.8333 0.8062 

Naïve Bayes 0.7778 0.7778 0.6000 0.7778 0.7778 

Random Forest 0.8333 0.8333 0.4000 0.8333 0.8062 

Decision Tree 0.8333 0.8333 0.4000 0.8333 0.8062 

BiGRU 0.6111 0.6343 0.4000 0.6111 0.6210 
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Table 7. Performance Evaluation without preprocessing enhancement in Immunotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.7778 0.7778 0.2000 0.8301 0.7185 

SVM 0.7778 0.7778 0.2000 0.8301 0.7185 

Naïve Bayes 0.8333 0.8333 0.4000 0.8646 0.8062 

Random Forest 0.8333 0.8333 0.4000 0.8646 0.8062 

Decision Tree 0.8333 0.8333 0.4000 0.8646 0.8062 

BiGRU 0.7222 0.7222 0.2000 0.6806 0.6771 

Table 8. Performance Evaluation after Feature Engineering and SMOTE-Tomek in Cryotherapy 
dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.9444 0.9444 1.0000 0.9495 0.9439 

SVM 0.8889 0.8889 0.9000 0.8889 0.8889 

Naïve Bayes 0.8333 0.8333 0.7000 0.8788 0.8318 

Random Forest 0.9444 0.9444 1.0000 0.9495 0.9439 

Decision Tree 0.8333 0.8333 0.8000 0.8395 0.9439 

BiGRU 0.8889 0.8889 0.9000 0.8889 0.8889 

Table 9. Performance Evaluation after Feature Engineering only in Cryotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.9444 0.9444 1.0000 0.9495 0.9439 

SVM 0.9444 0.9444 0.9000 0.9506 0.9446 

Naïve Bayes 0.8333 0.8333 0.7000 0.8788 0.8318 

Random Forest 0.9444 0.9444 1.0000 0.9495 0.9439 

Decision Tree 0.8333 0.8333 0.8000 0.8395 0.8338 

BiGRU 0.8333 0.8333 0.8000 0.8395 0.8338 

Table 10. Performance Evaluation after SMOTE-Tomek only in the Cryotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.8889 0.8889 0.9000 0.8889 0.8889 

SVM 0.8889 0.8889 0.9000 0.8889 0.8889 

Naïve Bayes 0.7778 0.7778 0.6000 0.8519 0.7722 

Random Forest 0.9444 0.9444 1.0000 0.9495 0.9439 

Decision Tree 0.8889 0.8889 1.0000 0.9074 0.8860 

BiGRU 0.8333 0.8333 0.8000 0.8395 0.8338 

Table 11. Performance Evaluation without preprocessing enhancement in Cryotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

XGBoost 0.9444 0.9444 1.0000 0.9495 0.9439 

SVM 0.8889 0.8889 0.9000 0.8889 0.8889 

Naïve Bayes 0.7778 0.7778 0.6000 0.8519 0.7722 

Random Forest 0.9444 0.9444 1.0000 0.9495 0.9439 

Decision Tree 0.9444 0.9444 1.0000 0.9495 0.9439 

BiGRU 0.8889 0.8889 0.9000 0.8889 0.8889 

 
Based on the test data analysis, it is evident that XGBoost outperforms other models,, 

especially with the implementation of comprehensive preprocessing such as Feature Engi-
neering (FE) combined with SMOTE-Tomek. This observation is notably apparent in the 
Cryotherapy dataset, where FE increases the specificity to 100%, indicating perfect 
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identification of the negative class. FE significantly boosts the performance of the XGBoost 
model, corroborating the initial analysis. 

Random Forest demonstrates consistent performance across various preprocessing 
modes and datasets. Random Forest is particularly robust, showing lower performance vari-
ations than other models. Decision Tree consistently performs moderately and does not sig-
nificantly benefit from advanced preprocessing techniques. This may be due to the high var-
iance nature of Decision Trees where additional preprocessing does not necessarily mean 
better generalization. 

There is marked variability in the performance of SVM and NB across different prepro-
cessing techniques. In most cases, SVM tends to perform slightly better than NB, likely due 
to its ability to manage non-linear data limits more effectively through the use of kernel tricks. 
The suboptimal performance of BiGRU may stem from its requirement for a larger dataset 
to learn dependencies in sequential data effectively. Moreover, a modest improvement in per-
formance with simpler preprocessing suggests potential overfitting when applying more com-
plex preprocessing strategies. 

Overall, this analysis highlights that preprocessing impacts machine learning models dif-
ferently, with XGBoost and Random Forest standing out for their strong performance across 
the board. This insight emphasizes the importance of selecting appropriate preprocessing 
techniques tailored to the specific characteristics of the model and the dataset at hand. 

5. Comparison 

In this section, a comparative evaluation is carried out between the results obtained from 
the best-performing models (XGBoost and Random Forest) on this study against several 
others from previous studies. Further comparison results are presented in Tables 10 and 11.  

Table 10. Comparison in Immunotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

Ref [2] 0.8300 0.9300 0.5000 - 0.9000 

Ref [4] 0.8800 0.8200 0.6000 0.8100 0.8100 

Our (best model) 0.8889 0.8889 0.6000 0.9037 0.8790 

Table 11. Comparison in Cryotherapy dataset. 

Method Accuracy Recall Specificity Precision F1 score 

Ref [2] 0.8900 0.8600 0.9300 - 0.8900 

Ref [4] 0.9700 0.9500 0.9800 0.9400 0.9100 

Our (best model) 0.9444 0.9444 1.0000 0.9495 0.9439 

 
The analysis of these tables indicates that the best model tested does not uniformly out-

perform across all metrics. Still, considering its relevance for clinical applications, the balance 
of recall and specificity is more important. The Immunotherapy dataset shows high recall, 
while specificity is the best. Meanwhile, the cryotherapy dataset produced perfect specificity, 
showing the absence of false positives, which is very important in preventing unnecessary 
treatment. The recall value is also close to the previous best value. Despite references to 
higher accuracy in other works, the equilibrium between recall and specificity offered by our 
model presents significant advantages in clinical settings, facilitating more accurate and safer 
treatment decisions. 

6. Conclusions 

This research has succeeded in analyzing the impact of preprocessing techniques on var-
ious ML and DL methods. Through comprehensive experiments, we managed to identify the 
most effective combination of preprocessing strategies and machine learning models. The 
results indicate that the XGBoost method can significantly enhance prediction performance 
when combined with appropriate preprocessing techniques such as feature engineering and 
SMOTE-Tomek links. Meanwhile, Random Forest demonstrates robust performance even 
without preprocessing, whereas BiGRU is less effective in this context. Although the 
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proposed model does not outperform all metrics compared to previous methods, the balance 
achieved between recall and specificity makes this approach highly valuable in clinical practice.  

For future research, we suggest further investigation of model parameter optimization 
techniques to improve the effectiveness of these already promising models. Hyperparameter 
tuning through grid or random search approaches can help find ideal configurations that may 
not be achieved through default settings. Additionally, a broader exploration of ensemble 
algorithms and model combination techniques could provide improved stabilization and 
more consistent performance. 
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