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Abstract: This research aims to improve the accuracy of liver disease classification using Quantum 

Feature Engineering (QFE) and the Synthetic Minority Over-sampling Tech-nique and Tomek Links 

(SMOTE-Tomek) data balancing technique. Four machine learning models were compared in this re-

search, namely eXtreme Gradient Boosting (XGB), Random Forest (RF), Support Vector Machine 

(SVM), and Logistic Regression (LR) on the Indian Liver Patient Dataset (ILPD) dataset. QFE is ap-

plied to capture correlations and complex patterns in the data, while SMOTE-Tomek is used to address 

data imbalances. The results showed that QFE significantly improved LR performance in terms of 

recall and specificity up to 99%, which is very important in medical diagnosis. The combination of 

QFE and SMOTE-Tomek gives the best results for the XGB method with an accuracy of 81%, recall 

of 90%, and f1-score of 83%. This study concludes that the use of QFE and data balancing techniques 

can improve liver disease classification performance in general. 

Keywords: Data augmentation; Feature selection; Hepatitis classification; Preprocessing effect; Quan-

tum Feature Engineering.  

 

1. Introduction 

Liver disease or hepatitis is a significant global health problem caused by excessive alco-
hol consumption, hepatitis virus infection, and obesity. According to the World Health Or-
ganization (WHO)[1], hepatitis causes various health problems, including death. There are 
five main types of hepatitis viruses: A, B, C, D, and E, with types B and C being the main 
causes of chronic disease, liver cirrhosis, and liver cancer. An estimated 354 million people 
are living with hepatitis B or C. Vaccination and education campaigns could prevent an esti-
mated 4.5 million premature deaths by 2030. Hepatitis classification research is important for 
early detection, accurate diagnosis, appropriate treatment, and the development of fairer al-
gorithms, as well as addressing health inequalities[2]–[4]. 

Various studies have been conducted on disease classification using machine learning 
(ML). Several popular ML methods such as Random Forest(RF)[3], [5]–[8], Support Vector 
Machine (SVM)[3], [8]–[11], eXtreme Gradient Boosting(XGB)[7], [8], [11], [12], k-nearest 
Neighboor(KNN)[5], [9], [13], [14], Naïve Bayes(NB)[3], [8], [13], and Logistic Regression 
(LR)[7][5], [8], [11]. Looking at the data presented in[15], four ML methods have the best 
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performance for classifying hepatitis datasets, namely RF, SVM, XGB, and LR. Each classi-
fication method has advantages and disadvantages. RF excels at overfitting and handling im-
balanced data but is complex and resource-intensive. SVM is effective in high-dimensional 
spaces and has good performance with maximum margins but is slow for large data and re-
quires appropriate kernel selection. XGB is fast and efficient with good overfitting control 
but is complex and requires a lot of memory and training time[16]–[18]. LR is simple, easy to 
interpret and efficient for linear data, but it is limited in handling nonlinear relationships and 
prone to overfitting in high dimensions. The choice of algorithm depends on the character-
istics of the dataset and the objectives of the analysis. 

Several hepatitis datasets have different characteristics. One of the datasets, namely the 
Indian Liver Patient Dataset (ILPD), has a relatively smaller number of features[3]. Classifying 
datasets with few features presents several significant challenges, such as limited information, 
overfitting, limited model complexity, model bias, difficulty in feature selection, and lack of 
variation. Limited information can reduce a model's ability to make accurate predictions, and 
models tend to learn irrelevant patterns, leading to overfitting. More complex methods may 
be ineffective, and models can be highly biased if the available features are not representative 
enough. Feature Engineering is one solution to deal with this[19]–[22]. The way it works is to 
create new features from existing features to increase the available information and help the 
model make more accurate predictions. However, in research[23], the use of feature selection 
contributed to an increase in accuracy of 2%.  

Popular Feature Engineering includes Scaling, Encoding, Interaction Features, and Pol-
ynomial Features. Scaling rescales data using normalization or standardization to keep all fea-
tures within the same value range, helping models work more effectively with balanced data. 
Encoding converts category features into a numeric format using methods such as One-Hot 
Encoding or Label Encoding, allowing the model to understand and process category fea-
tures. Interaction Features involve creating new features based on interactions between exist-
ing features to capture more complex nonlinear relationships. Polynomial Features create new 
features from polynomial combinations of original features, allowing the model to capture 
nonlinear relationships that increase prediction accuracy[24]–[26]. Quantum Feature Engi-
neering (QFE) is a new approach that uses quantum computing principles for feature trans-
formation. By using qubits that can be in a superposition of many states at once, QFE can 
capture more complex correlations and patterns in data, offering increased computational 
efficiency and the ability to solve problems that are difficult to address with classical methods, 
giving ML models increased performance in large and complex datasets [27]–[29].  

Another problem in various datasets, especially in medical datasets, is the imbalanced 
number of records in each class. Imbalanced data occurs when the number of samples from 
the majority class is much greater than that from the minority class. This can cause the ML 
model to be biased towards the majority class and ignore the minority class, which is often 
more important to identify[30]. To overcome this problem, data balancing techniques such 
as Synthetic Minority Over-sampling Technique (SMOTE) and Tomek Links are used. 
SMOTE increases the number of minority class samples by creating new synthetic sam-
ples[31], [32], while Tomek Links removes adjacent samples from the majority and minority 
classes that are considered difficult to classify correctly[33]. The combination of SMOTE and 
Tomek Links (SMOTE-Tomek) can help reduce bias and improve model performance in 
detecting cases from minority classes, which is crucial in medical applications to ensure cor-
rect and fair diagnosis for all patients[18]. Based on this literature, this research aims to: 
1. Four ML models, namely XGB, RF, SVM, and LR, were compared to classify liver dis-

ease in the LIPD dataset. 
2. Analyze the effects of using QFE on the four selected models. 
3. Integrating SMOTE-Tomek and QFE to get the best performance in ML models. 

The rest of the paper is organized into five sections. Section 2 reviews related literature 
that uses the same dataset and highlights the research gaps. Section 3 details the proposed 
method and its stages. Section 4 presents the results and compares the three preprocessing 
approaches. Section 5 discusses the comparisons and concludes the paper.  

2. Related Works 

Several previous studies have developed and analyzed classification methods for detect-
ing liver disease or hepatitis, such as in research [13] which tested several methods such as 
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KNN, NB, and C.4.5 to classify the ILPD dataset and the 'new' dataset (NDS) created by the 
author the paper. The performance of the three methods is quite competitive on each matrix 
for the NDS and ILPD datasets. For accuracy on the ILPD C.4.5 dataset, it is significantly 
superior, whereas it is significantly weaker in precision and specificity. For the ILPD dataset, 
the best accuracy is 0.69 for the C4.5 method, recall is 0.75 for the NB method, precision is 
0.78 for the KNN method, and specificity is 0.98 for the KNN method. Research [34] also 
compared several methods for classifying medical datasets, specifically on the ILPD dataset. 
The best accuracy was 0.69 for the J48 method, the best recall for the NB method was 0.95, 
the best precision for the bagging method was 0.44, and the best specificity for the bagging 
method was 0.86.  

Another research in [23] compared several methods, such as LR, Sequential Minimal 
Optimization (SMO), RF, NB, J48, and KNN, on the IPLD dataset. Comparison of the re-
sults of various algorithms is carried out with and without feature selection techniques. After 
the feature selection process, the features selected are Total Bilirubin, Direct Bilirubin, Alka-
line Phosphatase, Serum Glutamic Pyruvic Transaminase, and Serum Glutamic Oxaloacetic 
Transaminase. LR is the method with the best accuracy performance, LR also experienced 
the highest increase in accuracy after feature selection, from 72.50% to 74.36%. Other meth-
ods that experienced an increase in performance after feature selection were RF and J48, while 
other methods decreased and were relatively stagnant. 

Research [3] analyzes the ILPD dataset from a different perspective, focusing on differ-
ences based on gender features. Several classification models, such as RF, SVM, NB, and LR, 
in four different experiments. The results generally show significant performance differences 
between the genders, with women tending to experience higher false negative rates than men. 
This means that women are more likely to have undetected liver disease, which can lead to a 
lack of appropriate treatment. In more detail, RF and LR significantly differ in false negative 
rate (FNR) between genders, where RF shows an FNR of -21.02% for women, while LR is -
24.07%. Experiments also show that using a gender-balanced dataset can improve overall 
performance: RF increased from 78.17% (SD 2.36) to 81.66% (SD 2.33), LR increased from 
71.31% (SD 2.37) to 74.53% (SD 1.96), SVM increased from 79.40% (SD 2.50) to 83.30% 
(SD 1.75), and NB increased from 71.53% (SD 2.61) to 74.75% (SD 1.9). 

Research [35] focuses more on developing the KNN method with Variable-Neighbor 
Weighted Fuzzy (Variable-NWFKNN) combined with Tomek Link and Reredundancy-based 
Undersampling (TL_RUS) to be tested on three liver disease datasets, namely ILPD, Madhya 
Pradesh Region Liver Patient Dataset (MPRLPD) and BUPA Medical Research Ltd. (BUPA). 
TL_RUS functions to balance the dataset with undersampling techniques. Variable-
NWFKNN improves classification performance on imbalanced datasets by giving greater 
weight to neighbors from minority classes and varying the number of neighbors (k) to over-
come zero division error. This method combines normalization, standardization, and prepro-
cessing with TL RUS to reduce bias and consistently improve classification performance on 
all three datasets. Specifically, the ILPD dataset resulted in an accuracy of 87.71%, sensitivity 
of 90.03%, specificity of 74.79%, precision of 95.21%, and f1-score of 92.55%.  

Based on several related works, it can be concluded that several studies only compared 
several standard methods. Then, several more specific analyses were carried out on balancing 
based on gender features. Furthermore, optimization of the classification method and several 
preprocessing techniques are also carried out, which are crucial to the final performance. This 
research analyzes other techniques more deeply, such as preprocessing based on QFE and 
the SMOTE-Tomek over-under sampling combination.  

3. Proposed Method 

3.1. Dataset Collection 

This research uses the ILPD dataset, which can be downloaded at https://ar-
chive.ics.uci.edu/dataset/225/ilpd+indian+liver+patient+dataset. This dataset has 583 in-
stances, ten features, and multivariate characteristics. Of the 583 records, 416 patients were 
diagnosed with liver disease and 167 patients without liver disease. It was also known that 441 
were male and 142 were female. More detailed features are in Table 1. 
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Table 1. Features details on ILPD dataset. 

No Feature Data Type Description 

1 Age Int Age of the patient in years 

2 Gender Categorical Gender of the patient (Male/Female) 

3 Total_Bilirubin Float Total bilirubin level in blood (mg/dL) 

4 Direct_Bilirubin Float Direct bilirubin level in blood (mg/dL) 

5 Alkaline_Phosphotase Int Alkaline phosphatase enzyme level in blood (IU/L) 

6 Alamine_Aminotransferase Int Alanine aminotransferase enzyme level in blood 
(IU/L) 

7 Aspartate_Aminotransferase Int Aspartate aminotransferase enzyme level in blood 
(IU/L) 

8 Total_Proteins Float Total protein level in blood (g/dL) 

9 Albumin Float Albumin level in blood (g/dL) 

10 Albumin_and_Globulin_Ratio Float Ratio of albumin to globulin in blood 

11 Outcome Int Diagnosis result (1: Liver Patient, 2: Non-Liver Pa-
tient) 

3.2. Preprocessing  

In this research, three main preprocessing stages are presented, along with three tests. 
The first test was carried out using first-stage preprocessing, and the second test used first- 
and second-stage preprocessing. Finally, the third test was carried out in the order of first, 
third, and second stage preprocessing. Training and model evaluation are carried out after 
preprocessing is carried out according to these provisions. Each preprocessing stage is ex-
plained as follows. 

3.2.1. First Stage  

At this stage, duplicate records and missing values are first removed to ensure data qual-
ity and integrity. Duplicate data can cause the model to learn unrepresentative patterns and 
increase bias, while missing values can result in analysis errors and reduce model performance. 
Second, label encoding on the gender feature converts text category data such as "male" and 
"female" into a numeric format, for example, 0 and 1. This facilitates processing by machine 
learning algorithms, saves memory and resources, and simplifies data analysis. Third, change 
the target/outcome labels from [1, 2] to [0, 1] to match the binary format commonly used in 
classification (see Figure 2). Then, in the first stage's final step, the features (X) from the target 
(y) in the dataset are separated. The dataset in the first stage will be tested for classification in 
the machine learning model proposed in section 3.3. 

 

Figure 2. Class distribution ILPD Dataset, 0 for a liver patient, 1 for a non-liver patient. 
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3.2.2. Second Stage – Quantum Feature Engineering (QFE) 

QFE is used to improve the performance of classification models through the use of 
quantum computing. QFE maps classical data into a quantum feature space, capturing data 
complexity that classical methods cannot reach. This process begins by converting bits into 
qubits and then feeding them to a Hadamard layer, where each qubit is mapped into a super-
position by applying a Hadamard (H) gate, expanding the search space and enabling the ex-
ploration of more quantum configurations. Hadamard gate is expressed by Equation (1). 

𝐻 =
1

√2
(
1 1
1 −1

) (1) 

It then proceeds with a parametric rotation layer consisting of three gates (RX, RY, RZ) 
applied to each qubit based on the classical input values, which helps in encoding classical 
data into quantum space. This rotation gate is expressed in Equation (2)-(4). 

𝑅𝑋(𝜃) = (
cos(𝜃/2) −𝑖sin(𝜃/2)

−𝑖sin(𝜃/2) cos(𝜃/2)
) (2) 

𝑅𝑌(𝜃) = (
𝑐𝑜𝑠(𝜃/2) −𝑠𝑖𝑛(𝜃/2)
𝑠𝑖𝑛(𝜃/2) 𝑐𝑜𝑠(𝜃/2)

) (3) 

𝑅𝑍(𝜃) = (𝑒
−𝑖𝜃/2 0
0 𝑒𝑖𝜃/2

) (4) 

The final layer of entanglement using CNOT gates creates complex quantum correla-
tions between qubits, allowing the model to capture non-linear dependencies better. The 
CNOT gate is expressed in Equation (5). 

CNOT = (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

) (5) 

The rotation and CNOT layers were performed three times to obtain better feature map-
ping. After quantum feature mapping, these features are scaled back to classical bit form then 
normalized to ensure consistent scaling before being used in classical model training, such as 
Logistic Regression. This combination of techniques produces a richer data representation 
and increases the model's ability to predict outcomes. The circuit visualization in the proposed 
QFE process is presented in Figure 3.  

 

Figure 3. Proposed QFE visualization. 

Next, the resulting quantum features are normalized with StandardScaler from scikit-
learn. Normalization is done by subtracting the original and mean values and then dividing it 
by the standard deviation, resulting in a distribution with a mean of 0 and a standard deviation 
of 1. Equation (6) is used to carry out the standardization process. 
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𝑧 =
𝑥 − 𝜇

𝜎
 (6) 

Where 𝑧 is the standardized feature value, 𝑥 is the original feature value, 𝜇 is the mean 

of the feature, and 𝜎 is the standard deviation of the feature. Standardization is applied to 
training and test data to ensure that all features are at the same scale, which is important for 
the optimal performance of many machine learning algorithms. 

3.2.3. Third Stage –SMOTE-Tomek  

Third stage preprocessing is carried out for the third test, namely testing with data bal-
ance and with QFE. Applying SMOTE-Tomek first ensures that the dataset is balanced, 
which is critical because class imbalance can significantly impact the performance of a ma-
chine learning model. Balancing the dataset before applying any feature engineering helps 
ensure that subsequent steps operate on a more representative sample of the data. In SMOTE, 
a new point is created by taking two nearby minority samples and generating a new sample 
between them. The SMOTE interpolation formula is shown in Equation (7). 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 + (𝑥𝑗 − 𝑥𝑖) × 𝜆 (7) 

Where 𝑥𝑖, 𝑥𝑗 is a nearby minority sample, and 𝜆 is a random value between 0 and 1. 
After applying SMOTE, the Tomek Links technique is used to clear decision boundaries be-
tween classes by removing pairs of samples that are close together but come from different 
classes, thereby reducing overlap and increasing the clarity of class boundaries. A combination 
of SMOTE and Tomek Links, known as SMOTE-Tomek, is applied only to the training data 
to ensure a more balanced dataset. 

After data balancing, the dataset is split into training and test sets using the 
train_test_split function of scikit-learn. The training set is used to build the model, while the 
testing set is used to evaluate the model's performance. The next step is feature normalization 
with a standard scaler with Equation (6). Finally, before entering the training stage, Recursive 
Feature Elimination (RFE) is used to select the features that will be carried out QFE. In the 
third stage, not all features are QFEed, but only four features selected by RFE are QFEed in 
section 3.2.2. Next, the four features carried out by QFE are combined with classical features 
and classified. 

3.3. Machine Learning Models Configuration 

The classification model was built using classes in the scikit-learn library. As a limitation, 
the configuration of each ML model is only simple without a grid search process to find the 
best hyperparameters, which is done in more detail on the effects of preprocessing. A simple 
configuration of each ML model can be seen in Table 2.  

Table 2. Machine learning model configuration. 

Model Configuration 

XGB random_state=42 

RF n_estimators=150, random_state=42 

LR random_state=42 

SVM probability=True, random_state=42 

3.4. Evaluation 

The performance of all classification models is evaluated using several metrics that can 
be calculated using the confusion matrix, namely accuracy, recall, precision, specificity, and 
f1 score. A confusion matrix is a table used to describe the performance of a classification 
model. It summarizes the outcomes of predictions by comparing the actual labels with the 
predicted labels. In the context of the classification of liver disease, Matix confusion is visu-
alized in Figure 4. 

Accuracy represents the proportion of correctly predicted instances out of the total in-
stances, providing a general overview of the model's performance for both classes. Con-
versely, Recall quantifies the percentage of true positive cases (liver patients) that the model 
successfully identifies. For liver disease detection, recall reflects the model's capability to 
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detect patients with liver disease accurately. Precision measures the percentage of positive 
predictions (predicted liver patients) that are actually correct. In the context of liver disease, 
precision reveals how many of the patients predicted to have liver disease genuinely have the 
condition. Specificity calculates the percentage of true negative cases (non-liver patients) that 
the model correctly identifies. For liver disease, specificity shows the model's effectiveness in 
recognizing patients who do not have liver disease. Lastly, the F1 score, which is the harmonic 
mean of precision and recall, offers a balanced measure that is particularly useful when dealing 
with the trade-offs between false positives and false negatives. The mathematical formulas 
for accuracy, recall, precision, speficity, and f1-score metrics are expressed in Equation (8)-
(12), respectively. 

 

 
Predicted Positive (Liver 

Patient) 
Predicted Negative (Non-

Liver Patient) 

Actual Positive (Liver Pa-
tient) 

True Positive (TP) False Negative (FN) 

Actual Negative (Non-
Liver Patient) 

False Positive (FP) True Negative (TN) 

Figure 4. Confusion matrix for liver disease classification. 

acc = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

rec = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

prec = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

spec = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (11) 

f1 = 
2 ∙ (prec ∙ rec)

prec + rec
 (12) 

TP: A patient who has liver disease is correctly diagnosed as having liver disease; TN: A 
patient who does not have liver disease is correctly diagnosed as not having liver disease; FP: 
A patient who does not have liver disease is incorrectly diagnosed as having liver disease; FN: 
A patient who has liver disease is incorrectly diagnosed as not having liver disease. 

4. Results and Discussion 

This research was implemented using Google Collab as the editor and Python as the 
programming language. This section is explained into two large parts, namely, three stages of 
dataset preprocessing and a discussion of classification results. 

4.1. First Stage Preprocessing 

The first preprocessing stage is done by deleting duplicate data and records with missing 
values. There are ten duplicate data in the liver patient class and three duplicate data in non-
liver patients. The results of the duplicate removal process are shown in Figure 5(a). Mean-
while, to remove missing values, 2 records were found in each class; the results are shown in 
Figure 5(b). 

Next, the process of normalizing values is carried out using a standard scaler and sepa-
rating features and targets. The sample dataset before normalization is shown in Figure 6, and 
after normalization is shown in Figure 7. Col_0, Col_1, ... Col_9 shows the ten features in 
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Table 1 in the same order. The preprocessing results at this stage are then tested for classifi-
cation to determine the plain performance of the model without QFE and SMOTE-Tomek. 

 
(a) 

 
(b) 

Figure 5. Class distribution (a) after deleting duplicates; (b) after deleting missing values. 

 

Figure 6. Sample dataset before normalization and have target field. 

 

Figure 7. Sample dataset after normalization without target field. 

4.2. Second Stage Preprocessing 

At an early stage, QFE is carried out as described in stage 3.2.2. Ten classic features are 
processed with QFE, and the output from this stage is also 10 QFE features, as shown in 
Figure 8. Before these features are classified, normalization is repeated with a standard scaler, 
the results of which are shown in Figure 9. 

 

Figure 8. Sample dataset with QFE features. 
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Figure 9. Sample dataset with QFE features after normalization. 

4.3. Third Stage Preprocessing 

At this stage, SMOTE-Tomek is carried out with input not from the second stage of 
preprocessing, but from the first preprocessing. So this third preprocessing is not carried out 
in the sequence process but the same process is repeated until the first preprocessing is used 
as input for this stage. SMOTE-Tomek is carried out with classical feature input. SMOTE 
was carried out to carry out oversampling of the minor class (non-liver patients). After this 
SMOTE process the number of minor and major classes became balanced as shown in Figure 
10 (a). Then Tomek links are carried out to delete data that is considered to be intersecting to 
reduce noise and bias in the dataset. Each class has 404 records, after the Tomek process 
deleted 23 records for each, so that the remaining are 381 records for each class (see Figure 
10 (b) which has 10 features.  

 

 
(a) 

 
(b) 

Figure 10. Sample dataset (a) After SMOTE; (b) After SMOTE-Tomek. 

Next, the QFE process is carried out with the same circuit, but QFE is not on all fea-
tures. The 4 best features were selected and carried out with RFE, then these four features 
were carried out with QFE. A sample of this stage is shown in Figure 11. Then, normalization 
is carried out with a standard scaler on the four QFE features, the sample results of which 
are presented in Figure 12. The final step in this stage is to combine the 10 classic features 
with the 4 normalized QFE features shown in Figure 13. 

 

Figure 11. Sample selected QFE features. 
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Figure 12. Sample selected QFE features after normalization. 

  

Figure 12. The final feature in the third stage preprocessing data. 

4.4. Classification results 

At this stage, three preprocessing methods were compared, and the results are presented 
in Tables 3, 4, and 5. Table 3 presents the results with input first stage preprocessing, consist-
ing of deleting duplicates, deleting missing values, and normalizing processes. The result is 
that the SVM method performs best with accuracy, recall, f1, and specificity advantages. The 
RF and The LR methods perform worst with input first-stage preprocessing.  

On the other hand, with input in the second stage, preprocessing LR is the best (see 
Table 4). QFE input contributes positively to boosting LR performance; even though the 
accuracy is relatively low, recall and specificity are the best and reach 0.99. These two meas-
uring tools are the most important in the case of medical data because they determine the 
diagnosis results the most[10], [36]–[38]. XGB follows this with superior accuracy and preci-
sion and has the same f1 as LR. Next is the RF method, followed by the SVM method. The 
performance of the SVM method with QFE input is relatively similar to the standard classic 
feature input. 

Table 3. Machine Learning models performance without QFE and SMOTE-Tomeks. 

Model Accuracy Precision Recall F1 Score Specificity 

LR 0.68 0.74 0.88 0.80 0.88 

SVM 0.72 0.75 0.92 0.83 0.92 

RF 0.69 0.77 0.82 0.80 0.82 

XGB 0.69 0.78 0.81 0.79 0.81 

 
In the third experiment (see Table 5) with third-stage preprocessing input, XGB was the 

best, where XGB was almost superior in all metrics except precision. This result probably 
compares best with the XGB results in the two previous experiments, which were always 
superior in precision. However, using SMOTE-Tomek combined with QFE was no better 
than the second experiment (only using QFE in the LR method. The most significant increase 
was in accuracy, but the accuracy metric is actually not the main thing in medical cases. The 
performance of the LR and SVM methods dropped when compared The second and first 
experiments. The RF method also experienced a slight decrease compared to the second ex-
periment but was better than the first experiment. 

From the three preprocessing stages carried out, it can be seen that the QFE method 
contributes significantly to improving model performance, especially in recall and specificity, 
which are very important in medical applications. However, the combination of QFE and 
SMOTE-Tomek does not always provide the best results compared to using QFE alone. 
Choosing the right preprocessing technique greatly influences the final model results, and it 
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is important to consider metrics relevant to the application context, such as recall and speci-
ficity in medical diagnosis. 

Table 4. Machine Learning models performance with QFE and without SMOTE-Tomeks. 

Model Accuracy Precision Recall F1 Score Specificity 

LR 0.74 0.75 0.99 0.85 0.99 

SVM 0.74 0.78 0.92 0.84 0.92 

RF 0.77 0.79 0.94 0.86 0.94 

XGB 0.77 0.80 0.92 0.85 0.92 

Table 4. Machine Learning models performance with QFE and SMOTE-Tomeks. 

Model Accuracy Precision Recall F1 Score Specificity 

LR 0.70 0.78 0.56 0.65 0.56 

SVM 0.75 0.84 0.61 0.71 0.61 

RF 0.78 0.83 0.69 0.75 0.69 

XGB 0.81 0.77 0.90 0.83 0.72 

5. Comparison 

In this section, a comparison of the performance of the proposed model with other 
existing methods in the literature is carried out. Table 6 presents a comparison between the 
results of this study and several previous studies. 

Table 6. Comparison with another method. 

Method Accuracy Precision Recall F1 Score Specificity 

Ref [13] 0.69 0.69 0.74 - 0.76 

Ref [34] 0.69 0.44 0.29 - 0.86 

Ref [23] 0.74 - - - - 

Ref [35] balance 0.88 0.95 0.90 0.92 0.74 

Ref [3] balance 0.83 0.78 0.92 0.84 0.92 

Our (balance, QFE) 0.81 0.77 0.90 0.83 0.72 

Ref [35] imbalance 0.78 0.89 0.82 0.85 0.59 

Ref [3] imbalance 0.79 0.75 0.92 0.83 0.92 

Our (imbalance) 0.72 0.75 0.92 0.83 0.92 

Our (imbalance, QFE) 0.74 0.75 0.99 0.85 0.99 

 
This study's results show that using QFE and data balancing techniques such as 

SMOTE-Tomek provides significant performance improvements in machine learning models 
for liver disease classification. On a balanced dataset, the method [35] has the highest accuracy 
of 0.88 with a precision of 0.95, recall of 0.90, and f1 score of 0.92. However, the specificity 
of this method is lower compared to other values. On an unbalanced dataset, this research 
shows recall up to 0.99 and a specificity of 0.99 using QFE. This shows that QFE can help 
improve model performance in detecting true positive and negative cases accurately[[10], 
[36]–[38]. This research shows that the use of Quantum Feature Engineering (QFE) can im-
prove the performance of machine learning models in liver disease classification, especially in 
terms of recall and specificity, which are very important in medical applications. Additionally, 
data balancing techniques such as SMOTE-Tomek also contribute positively to model per-
formance, although they do not always provide significant improvements in all metrics 

6. Conclusions 

This research shows that applying QFE and SMOTE-Tomek data balancing techniques 
can improve the performance of machine learning models in liver disease classification. QFE 
contributes to increased recall and specificity, which is important for accurate medical diag-
nosis. The XGB model performs best with 81% accuracy, 90% recall, and 83% f1-score on a 
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balanced dataset. This research indicates that the use of QFE can capture more complex 
patterns in the data, while SMOTE-Tomek helps reduce bias towards the majority class. How-
ever, combining QFE and SMOTE-Tomek does not always improve performance in all met-
rics. Therefore, this study suggests further exploration of additional techniques such as hybrid 
quantum-classical methods, more sophisticated data balancing techniques, and QFE applica-
tions on various other types of medical datasets for better generalization of the results. Fur-
ther research is needed to understand more deeply the impact of these techniques on a wider 
range of dataset conditions and classification methods. 
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