Search for collections on FTS Digilib

Items where Author is "Aghware, Fidelis Obukohwo"

Group by: Item Type | No Grouping
Jump to: Article
Number of items: 4.

Article

Odiakaose, Christopher Chukwufunaya and Aghware, Fidelis Obukohwo and Okpor, Margaret Dumebi and Eboka, Andrew Okonji and Binitie, Amaka Patience and Ojugo, Arnold Adimabua and Setiadi, De Rosal Ignatius Moses and Ibor, Ayei Egu and Ako, Rita Erhovwo and Geteloma, Victor Ochuko and Ugbotu, Eferhire Valentine and Aghaunor, Tabitha Chukwudi (2024) Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner. Journal of Future Artificial Intelligence and Technologies, 1 (3). pp. 269-283. ISSN 3048-3719

Okpor, Margaret Dumebi and Aghware, Fidelis Obukohwo and Akazue, Maureen Ifeanyi and Eboka, Andrew Okonji and Ako, Rita Erhovwo and Ojugo, Arnold Adimabua and Odiakaose, Christopher Chukwufunaya and Binitie, Amaka Patience and Geteloma, Victor Ochuko and Ejeh, Patrick Ogholuwarami (2024) Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble. Journal of Future Artificial Intelligence and Technologies, 1 (2). pp. 109-123. ISSN 3048-3719

Ako, Rita Erhovwo and Aghware, Fidelis Obukohwo and Okpor, Margaret Dumebi and Akazue, Maureen Ifeanyi and Yoro, Rume Elizabeth and Ojugo, Arnold Adimabua and Setiadi, De Rosal Ignatius Moses and Odiakaose, Chris Chukwufunaya and Abere, Reuben Akporube and Emordi, Frances Uche and Geteloma, Victor Ochuko and Ejeh, Patrick Ogholuwarami (2024) Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost. Journal of Computing Theories and Applications, 2 (1). pp. 86-101. ISSN 3024-9104

Aghware, Fidelis Obukohwo and Ojugo, Arnold Adimabua and Adigwe, Wilfred and Odiakaose, Christopher Chukwufumaya and Ojei, Emma Obiajulu and Ashioba, Nwanze Chukwudi and Okpor, Margareth Dumebi and Geteloma, Victor Ochuko (2024) Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection. Journal of Computing Theories and Applications, 1 (4). pp. 407-420. ISSN 3024-9104

This list was generated on Thu Apr 3 10:02:16 2025 WIB.